
Applications of Craig Interpolants in Model
Checking

K. L. McMillan

Cadence Berkeley Labs

Abstract. A Craig interpolant for a mutually inconsistent pair of for-
mulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with
B, and (3) expressed over the common variables of A and B. An inter-
polant can be efficiently derived from a refutation of A ∧ B, for certain
theories and proof systems. We will discuss a number of applications of
this concept in finite- and infinite-state model checking.

1 Introduction

A Craig interpolant for a mutually inconsistent pair of formulas (A,B) is a
formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed
over the common variables of A and B. An interpolant can be efficiently derived
from a refutation of A∧B, for certain theories and proof systems. For example,
interpolants can be derived from resolution proofs in propositional logic, and
for systems of linear inequalities over the reals [8, 14]. These methods have been
recently been extended [10] to combine linear inequalities with uninterpreted
function symbols, and to deal with integer models. One key aspect of these
procedures is that they yield quantifier-free interpolants when the premises A
and B are quantifier-free.

This paper will survey some recent applications of Craig interpolants in model
checking. We will see that, in various contexts, interpolation can be used as a
substitute for image computation, which involves quantifier elimination and is
thus computationally expensive. The idea is to replace the image with a weaker
approximation that is still strong enough to prove some property.

For example, interpolation can be used as an alternative to image compu-
tation in model checking, to construct an inductive invariant. This invariant
contains only information actually deduced by a prover in refuting counterex-
amples to the property of a fixed number of steps. Thus, in a certain sense, this
method abstracts the invariant relative to a given property. This avoids the com-
plexity of computing the strongest inductive invariant (i.e., the reachable states)
as is typically done in model checking, and works well in the the case where a
relatively localized invariant suffices to prove a property of a large system.

This approach gives us a complete procedure for model checking temporal
properties of finite-state systems that allows us to exploit recent advances in SAT
solvers for the proof generation phase. Experimentally, the method is found to
be quite robust for industrial hardware verification problems, relative to other



model checking approaches. The same approach can be applied to infinite-state
systems, such as programs and parameterized protocols (although there is no
completeness guarantee in this case). For example, it is possible to verify systems
of timed automata in this way, or simple infinite-state protocols, such as the N -
process “bakery” mutual exclusion protocol.

In addition, interpolants derived from proofs can be mined to obtain predi-
cates that are useful for predicate abstraction, as is done in the Blast software
model checker [7]. This approach has been used to verify properties of C pro-
grams with in excess of 100K lines of code. Finally, interpolation can be used to
approximate the transition relation of a system relative to a given property. This
approach can be applied to finite-state model checking and can also be useful in
predicate abstraction, where constructing the exact abstract transition relation
can be prohibitively costly.

1.1 Outline of the paper

The next section of the paper introduces the technique of deriving Craig inter-
polants from proofs. Section 3 then describes the method of interpolation-based
model checking, section 4 covers the extraction of predicates for predicate ab-
straction from interpolants, and section 5 deals with transition relation abstrac-
tion.

2 Interpolants from proofs

Given a pair of formulas (A,B), such that A ∧B is inconsistent, an interpolant
for (A,B) is a formula Â with the following properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as ∧ and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [5]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A∧B in linear time.
For example, a purely propositional refutation of A∧B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [8, 14].

In [10] it is shown that linear-size interpolants can be derived from refu-
tations in a first-order theory with with uninterpreted function symbols and
linear arithmetic. This translation has the property that whenever A and B
are quantifier-free, the derived interpolant Â is also quantifier-free.1 This prop-
erty will be exploited in the applications of Craig interpolation that we describe
below.
1 Note that the Craig theorem does not guarantee the existence of quantifier-free

interpolants. In general this depends on the choice of interpreted symbols in the
logic.



Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A
is inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and
focus on relevant ones, we can think of interpolation as a way of filtering out
irrelevant information from A.

3 Model checking based on Craig interpolation

We now consider an application of Craig interpolation as a replacement for the
costly image operator in symbolic model checking. In effect, interpolation allows
us to filter information out of the image that is not relevant to proving the
desired property.

3.1 Representing systems symbolically

In symbolic model checking, we represent the transition relation of a system
with a formula. Here, we assume we are given a first-order signature S, consist-
ing of individual variables and uninterpreted n-ary functional and propositional
constants. A state formula is a first-order formula over S, (which may include
various interpreted symbols, such as = and +). We can think of a state formula φ
as representing a set of states, namely, the set of first-order models of φ. We will
express the proposition that an interpretation σ over S models φ by φ[σ]. We
also assume a first-order signature S′, disjoint from S, and containing for every
symbol s ∈ S, a unique symbol s′ of the same type. For any formula or term φ
over S, we will use φ′ to represent the result of replacing every occurrence of a
symbol s in φ with s′. Similarly, for any interpretation σ over S, we will denote
by σ′ the interpretation over S′ such that σ′s′ = σs. A transition formula is a
first-order formula over S∪S′. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (σ1, σ2), such that σ1 ∪σ′2 models T .
Will will express the proposition that σ1 ∪ σ′2 models T by T [σ1, σ2].

Given two state formulas φ and ψ, we will say that ψ is T -reachable from φ
(in k steps) when there exists a sequence of states σ0, . . . , σk, such that φ[σ0]
and for all 0 ≤ i < k, T [σi, σi+1], and ψ[σk].

3.2 Bounded model checking

The fact that ψ is reachable from φ for bounded k can be expressed symbolically.
For all integers i, let Si be a first-order signature (representing the state of the
system at time i) such that for every s ∈ S, there is a corresponding symbol si

in Si of the same type. If f is a formula, we will write fi to denote the result of
substituting si for every occurrence of a symbol s, and si+1 for every occurrence
of a symbol s′, in f . Thus, assuming T is total, ψ is T -reachable within k steps
from φ when this formula is consistent:

φ0 ∧ T0 ∧ · · ·Tk−1 ∧ (ψ0 ∨ · · · ∨ ψk)



We will refer to this as a bounded model checking formula [2], since by testing
satisfiability of such formulas, we can determine the reachability of one condition
from another within a bounded number of steps.

3.3 Symbolic model checking

Let us define the strongest postcondition of a state formula φ with respect to
transition formula T , denoted spT (φ), as the strongest proposition ψ such that
φ ∧ T implies ψ′. We will also refer to this as the image of φ with respect to T .

A transition system is a pair (I, T ), where the initial condition I is a state
formula and T is a transition formula. We will say that a state formula ψ is
reachable in (I, T ) when it is T -reachable from I, and it is an invariant of (I, T )
when ¬ψ is not reachable in (I, T ). A state formula φ is an inductive invariant
of (I, T ) when I implies φ and spT (φ) implies φ (note that an inductive invariant
is trivially an invariant).

The strongest invariant of (I, T ) can be expressed as a fixed point of spT , as
follows:

R(I, T ) = µQ. I ∨ spT (Q)

We note that the fixed points with respect to Q are exactly the inductive invari-
ants. To prove the existence of the least fixed point, i.e., the strongest inductive
invariant, we have only to show that the transformer spT is monotonic.

Now, suppose that we have a method of symbolically computing the strongest
postcondition. For example, in the case of propositional logic, the strongest post-
condition is given by

spT (φ)′ = ∃S.(φ ∧ T )

Thus, we can compute it using well-developed methods for Boolean quantifier
elimination [3, 11]. This means that we can compute the strongest inductive
invariant (also known as the reachable state set) by simply iterating this operator
to a semantic fixed point, a procedure known as symbolic reachability analysis.2

To verify that some formula ψ is unreachable in (I, T ), we have only to show
that it is inconsistent with the strongest inductive invariant.

3.4 Approximate image based on interpolation

The disadvantage of the above approach is that it can be quite costly to compute
the strongest inductive invariant, yet this invariant may be much stronger than
what is needed to prove unreachability of ψ. By carefully over-approximating
the image (strongest postcondition), we may simplify the problem while still
proving ψ unreachable. An over-approximate image operator is an operator s̄p,
such that, for all predicates φ, spT (φ) implies s̄pT (φ). Using s̄p, we can compute
an over-approximation R′(I, T ) of the reachable states. We will say that an over-
approximate image operator s̄p is adequate with respect to ψ when, for any φ

2 Note, convergence of this iteration is guaranteed for finite- but not infinite-state
systems.



that cannot reach ψ, s̄pT (φ) also cannot reach ψ. In other words, an adequate
over-approximation does not add any states to the strongest postcondition that
can reach a bad state. If s̄p is adequate, then ψ is reachable exactly when it is
consistent with R′(I, T ), the over-approximated reachable states. The question,
of course, is how to compute an adequate s̄p. After all, if we knew which states
could reach a bad state, we would not require a model checker.

One answer is to bound our notion of adequacy. Let’s say that a k-adequate
image operator is an s̄p such that, for any φ that cannot reach ψ, s̄pT (φ) cannot
reach ψ within k steps. We note that if k is greater than the diameter of the
state space, then k-adequate is equivalent to adequate, since by definition any
state that can be reached can be reached within the diameter.

The advantage of this notion is that we can use bounded model checking and
interpolation to compute a k-adequate image operator. We set up a bounded
model checking formula to determine whether a given state formula φ can reach ψ
in from 1 to k + 1 steps. However, we break this formula into two parts:

A
.= φ0 ∧ T0

B
.= T1 ∧ · · · ∧ Tk ∧ (ψ1 ∨ · · · ∨ ψk+1)

Now suppose A ∧ B is unsatisfiable and let Â be some interpolant for (A,B)
(which we can derive from the refutation of A ∧ B). Note that the symbols
common to A and B are in S1 (the symbols representing the state at time 1)
thus Â is over S1. Dropping the time subscripts in Â, we obtain a state formula,
which we will take as the over-approximate image of φ. That is, let

s̄pT (φ) .= Â〈S/S1〉

The properties of interpolants guarantee that s̄p defined in this way is a k-
adequate image over-approximation. Note that, since φ0∧T0 implies Â, it follows
that every state in s̄pT (φ) is reachable from φ in one step, hence s̄p is an over-
approximation. Further, since Â is inconsistent with B, it follows that no state
in s̄pT (φ) can reach ψ within k steps. Hence s̄p is k-adequate.3 One way to
think about this is that the interpolant is an abstraction of A containing just
the information from A that the prover used to prove that φ cannot reach ψ in 1
to k + 1 steps. Thus, it is in a sense an abstraction of the image relative to a
(bounded time) property.

Now suppose we use this k-adequate image operator to compute an over-
approximation R′(I, T ) of the reachable states. If we find that R′(I, T ) ∧ ψ is
inconsistent, we know that ψ is unreachable. If not, it may be that we have over-
approximated too much. In this case, however, we can simply try again with a
larger value of k. Note that if the bounded model checking formula A∧B turns
out to be satisfiable in the first iteration (when φ = I) then ψ is in fact reachable
and we terminate with a counterexample.

3 Note that if A∧B is satisfiable, then φ can reach ψ, so our image operator can yield
any over-approximation, the simplest being the predicate True.



It is easy to show that, for finite-state systems, if we keep increasing k, this
procedure must terminate with either a proof or a counterexample. That is, if
we keep increasing k, either we will obtain a counterexample, or k will become
greater than the diameter of the state space. In the latter case, our k-adequate
image operator is in fact an adequate image operator, so our reachability answer
must be correct. In practice, we find that the k values at which we terminate
are generally smaller than the diameter. This diameter-based termination bound
contrasts with the termination bound for the k-induction method [16] which is
length of the shortest simple path in the state space (also called the recurrence
diameter). The shortest simple path can be exponentially longer than the diam-
eter.

3.5 Practical experience

In the case of hardware verification, a system is made up of Boolean gates,
hence we can model it with a transition formula T which is purely propositional.
We can therefore use an efficient Boolean satisfiability (SAT) solver [13, 17] to
solve the bounded model checking formulas. Modern SAT solvers use heuristics
designed to focus the proof on relevant facts, and are quite robust against the
addition of irrelevant constraints. The solvers are also easily modified to produce
refutations by resolution in the unsatisfiable case [12].

As an example, the performance of the interpolation-based model checking
procedure using a SAT solver was tested on a set of benchmark problems [12]
derived from the PicoJava II microprocessor from Sun Microsystems. The prop-
erties in this benchmark suite are localizable, meaning that only a relatively small
subset of the components of a large design are needed to prove the properties.
Thus, the ability to filter out irrelevant information is crucial to verifying these
properties. In fact, the SMV model checker based on Binary Decision Diagrams
is unable to verify any of the properties, since it performs exact reachability
analysis.

On the other hand, the interpolation-based method using a SAT solver can
verify 19 out of the 20 problems. It is also interesting to compare the method
with another abstraction technique that uses refutations from bounded model
checking formulas to identify a subset of system components that are relevant
to the property, and then uses standard BDD-based methods to verify this sub-
set [12]. This method is called proof-based abstraction.

Figure 1 shows a run-time comparison of the interpolation-based method
against the proof-based abstraction method for the PicoJava-II benchmark set.
In the figure, each point represents one benchmark problem, with the value on
the X axis representing the time in seconds required for the earlier proof-based
abstraction method, and the time on the Y axis representing the time in seconds
taken by the interpolation-based method. A time value of 1000 indicates a time-
out after 1000 seconds. Points below the diagonal therefore indicate an advantage
for the interpolation method. We observe 16 wins for interpolation and 3 for
proof-based abstraction, with one problem solved by neither method. In five or
six cases, the interpolation method wins by two orders of magnitude. As it turns



out, the performance bottleneck in both methods is bounded model checking.
The interpolation method, however, tends to terminate at smaller values of k,
and thus runs faster on average. This trend has been verified on a large set
(about 1000 problems) of benchmark problems from industrial applications.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Proof-based abstraction (s)

In
te

rp
ol

at
io

n-
ba

se
d 

m
et

ho
d 

(s
)

Fig. 1. Run times on PicoJava II benchmarks.

3.6 Infinite-state systems

It is also possible to apply the interpolation method to infinite-state systems
whose transition formulas are first-order formulas. In this case, we can use a
first-order decision procedure to check satisfiability of the bounded model check-
ing formulas (provided the procedure can produce refutations in a suitable proof
system). In this case, the procedure is not guaranteed to terminate.4 However,
using this approach it is possible to verify safety of some simple infinite-state
protocols, such as Fischer’s timed mutual exclusion protocol, or a simple ver-
sion of Lamport’s “bakery” mutual exclusion algorithm. The method has also
been applied to software model checking, though it is not yet clear whether the
approach is more efficient than methods based on predicate abstraction [1, 18].

One interesting point to note here is that, using the interpolation procedure
of [10], quantifiers occurring in the transition relation T can result in quanti-
fiers in the interpolants (the quantifiers are used to eliminate variables that are
4 However, it seems likely that convergence could be guaranteed given a suitably re-

stricted prover, if the system has a quantifier-free inductive invariant that proves the
property. Convergence can also be guaranteed if the system has a finite bisimulation
quotient, as in timed automata.



introduced into the interpolants by quantifier instantiation). Thus, the method
provides a way to synthesize invariants that contain quantifiers.

As an example, suppose we have a simple program whose state consists of
an array a, with all elements initialized to 0. At each step, the program inputs a
number x and sets a[x] to 1. We would like to prove that, at all times, a[z] 6= 2.
Thus, our initial condition I is ∀j. a[j] = 0, our transition condition T is

∀j. if j = x then a′[j] = 1 else a′[j] = a[j]

and our final condition ψ is a[z] = 2. Expanding the split bounded model check-
ing formula for k = 1, we have:

A
.= (∀j. a0[j] = 0) ∧ (∀j. if j = x0 then a1[j] = 1 else a1[j] = a0[j])

B
.= (a1[z1] = 2)

In refuting this, the prover instantiates the universal in A with j = z1, yielding:

A
.= a0[z1] = 0 ∧ if z1 = x0 then a1[z1] = 1 else a1[z1] = a0[z1]

B
.= (a1[z1] = 2)

Notice the introduction of the extraneous variable z1 into A. After refuting this
pair, the interpolant Â we obtain is a1[z1] = 0 ∨ a1[z1] = 1. The extraneous
variable z1 is then eliminated using a universal quantifier. This is sound, since Â
is implied by the original A which does not contain z1. This yields the quantified
interpolant ∀j. a1[j] = 0∨a1[j] = 1. Dropping the subscripts, we have ∀j. a[j] =
0∨a[j] = 1, which is in fact an inductive invariant for our program, proving that
a[z] = 2 is not reachable.

This approach makes it possible to verify some parameterized protocols, such
as the “bakery” with an arbitrary number of processes, which requires a quanti-
fied invariant. It should be noted, however, that the technique is not well suited
to protocol verification, since it is based on bounded model checking. Empirically,
bounded model checking of protocols is observed to be fairly inefficient. This can
be explained by the fact that protocols tend not to be localizable (i.e., there is
little state information that can be thrown away without breaking the protocol)
and they tend to have interleaving concurrency, which limits the prover’s ability
to propagate implications across time frames. For such applications, it may be
more effective to combine the approach with predicate abstraction, as described
in the next section.

4 Predicates from interpolants

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which the state of an infinite-state system is represented abstractly by the
truth values of a chosen set of predicates. In effect, the method computes the
strongest inductive invariant of the program expressible as a Boolean combi-
nation of the predicates. Typically, if this invariant is insufficient to prove the



property in question, the abstraction is refined by adding predicates. For this
purpose, the Blast software model checker uses interpolation in a technique
due to Ranjit Jhala [7].

The basic idea of the technique is as follows. A counterexample is a sequence
of program locations (a path) that leads from the program entry point to an error
location. When the model checker finds a counterexample in the abstraction, it
builds a bounded model checking formula that is satisfiable exactly when the
path is a counterexample in the concrete model. This formula consists of a set of
constraints: equations that define the values of program variables in each location
in the path, and predicates that must be true for execution to continue along the
path from each location (these correspond to program branch conditions). As
an example, Figure 2 shows a program path, and the corresponding transition
constraints.

x1 = ctr0

ctr1 = ctr0+1

y1 = ctr1

x1 = m0

y1 ≠ m0+1

Ak

Bk

y1=x1+1

x := ctr;

ctr := ctr+1;

y := ctr;

assume x = m;

assume y ≠ m+1;

A'k

(a) (b) (c)

Fig. 2. Predicates from interpolants. Figure shows (a) an infeasible program path, (b)
transition constraints, divided into prefix Ak and suffix Bk and (c) an interpolant Âk

for (Ak, Bk).

Now let us divide the path into two parts, at location k. Let Ak be the
set of constraints on transitions preceding location k and let Bk be the set
of constraints on transitions subsequent to location k. Note that the common
variables of A and B represent the values of the program variables at location k.
An interpolant for (Ak, Bk) is a fact about location k that must hold if we take
the given path to location k, but is inconsistent with the remainder of the path.
An example of such a division, and the resulting interpolant, is also shown in 2.

If we derive such interpolants for every location of the path from the same
refutation of the constraint set, we can show that the interpolant for location k
is sufficient to prove the interpolant for location k+1. As a result, if we add the
atomic predicates occurring in the interpolants to the set of predicates defining
the abstraction, we are guaranteed to rule out the given path as a counterex-
ample in the abstract model. Note that it is important here that interpolants
be quantifier-free, since the predicate abstraction method can synthesize any
Boolean combination of atomic predicates, but cannot synthesize quantifiers.
We can guarantee that the interpolants are quantifier-free if the transition con-
straints are quantifier-free.



This interpolation approach to predicate selection has the advantage that it
tells us which predicates are relevant to each program location in the path. By
using at each program location only predicates that are relevant to that loca-
tion, a substantial reduction in the number of abstract states can be achieved,
resulting in greatly increased performance of the model checker [7]. The fact
that the interpolation method can handle both linear inequalities and uninter-
preted functions is useful, since linear arithmetic can represent operations on
index variables, while uninterpreted functions can be used to represent array
lookups or pointer dereferences, or to abstract unsupported operations (such as
multiplication).

Notice, finally, that the predicate abstraction requires us to solve bounded
model checking instances only for particular program paths, rather than for all
possible paths of a given length. Such problems are much easier for the decision
procedure to solve. Thus, the predicate abstraction approach might be feasible
in cases such as protocols where full bounded model checking tends not to be
practical.

5 Transition relation abstraction using interpolants

Because of the expense of image computation in symbolic model checking, it is
often beneficial to abstract the transition relation before model checking, remov-
ing information that is not relevant to the property to be proved. Some examples
of techniques for this purpose are [4, 12].

Here, we will consider a method of abstracting the transition relation using
bounded model checking and interpolation. The technique is based on the notion
of a symmetric interpolant. That is, given an inconsistent set of formulas A =
{a1, . . . , an} a symmetric interpolant for A is a set of formulas Â = {â1, . . . , ân}
such that each ai implies âi, and Â is inconsistent, and each âi is over the symbols
common to ai and A\ai. We can construct a symmetric interpolant for A from a
refutation of

∧
A by simply letting âi be the interpolant derived from the given

refutation for the pair (ai,
∧
A \ ai). As long as all the individual interpolants

are derived from the same proof, we are guaranteed that their conjunction is
inconsistent.

Now, given a transition system (I, T ), and a formula ψ, let us consider the
set of formulas:

A = {I0, T0, . . . , Tk−1, (ψ0 ∨ · · ·ψk)}
Note that

∧
A is exactly the bounded model checking formula for k steps. Sup-

pose we refute this formula, and from the refutation, construct a symmetric
interpolant Â. Notice that each T̂i is a formula implied by the transition relation
at time i. If we take the conjunction of these formulas, we have a transition
formula that admits no path up to k steps from I to ψ. That is, let the abstract
transition relation be

T̂ =
∧
T̂i〈S/Si〉〈S′/Si+1〉

If we model check unreachability of ψ in the abstract transition system (I, T̂ ),
we are guaranteed that there is no counterexample of up to k steps. If φ is



in fact unreachable in (I, T̂ ), we know it is unreachable in the stronger (I, T ).
Otherwise, we can refine T̂ using a larger value of k. In the finite-state case, this
method is guaranteed to converge, since we cannot refine T̂ infinitely.

The advantages of T̂ as a transition relation are that (1) it contains only
facts about the transition relation used in resolving the bounded model checking
problem, and (2) it contains only state-holding symbols (those that occur in I
or occur primed in T ). Thus, for example, free variables introduced to represent
inputs of the system are eliminated. This can substantially simplify the image
computation.

One potential application of this idea is in predicate abstraction. Since the
image computation in predicate abstraction requires in the worst case an expo-
nential number of calls to a decision procedure, software model checkers tend
to avoid an exact computation by using approximate methods that lose correla-
tions between predicates [1]. This approximation can lead to false counterexam-
ples. On the other hand, if we derive the transition relation approximation from
symmetric interpolants (another idea due to Ranjit Jhala) we can guarantee
convergence without using an exact image computation, and at the same time
focus the transition relation approximation on relevant facts. We can improve
the performance by considering only bad program paths found by the model
checker, as opposed to all possible paths of length k. Preliminary experiments
show that this approach converges more rapidly than the approach of [6], which
uses analysis of the predicate state transitions in the abstract counterexamples
to refine the transition relation.

6 Conclusion

We have seen that Craig interpolants derived from proofs have a variety of appli-
cations in model checking, primarily in replacing exact image computations with
approximate ones. Interpolation allows us to exploit the ability of modern SAT
solvers, and decision procedures based on them, to narrow down a proof to rele-
vant facts. We can extract as an interpolant just the information about an image
or a transition relation that was actually used by the prover to refute a bounded
model checking instance. This allows us in turn to weaken our computation of
the strongest invariant, while still proving a given property, or to extract the
building blocks from which a suitable invariant might be constructed.

A number of the potential applications of interpolation have yet to be ex-
plored. For example, interpolation-based model checking for software seems a
promising approach, as does interpolation-based transition relation abstraction
for hardware verification. Recently, predicate abstraction methods have been
extended to the synthesis of quantified invariants in a method called indexed
predicate abstraction [9]. It seems plausible that quantified interpolants could be
used in the selection of indexed predicates in this method. It also seems plausible
that interpolation could be used to good effect for transition relation abstraction
in parallel program verification.



Finally, it would be useful to extend the extraction of interpolants from proofs
to other theories, for example, first-order arrays and bit vectors. This would
extend the utility of interpolant extraction as a tool in the verifier’s toolkit.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. STTT, 5(1):49–58, 2003.

2. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In TACAS’99, volume 1579 of LNCS, pages 193–
207, 1999.

3. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. In VLSI ’91, Edinburgh, Scotland, 1991.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, pages 154–169, 2000.

5. W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

6. Satyaki Das and David L. Dill. Successive approximation of abstract transition
relations. In LICS 2001, pages 51–60, 2001.

7. T. A. Henzinger, R. Jhala, Rupak Majumdar, and K. L. McMillan. Abstractions
from proofs. In Principles of Prog. Lang. (POPL 2004), pages 232–244, 2004.

8. J. Kraj́ıc̆ek. Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, June
1997.

9. S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via predicate
abstraction. In Verification, Model Checking, and Abstract Interpretation (VMCAI
2004), volume 2937 of LNCS, pages 267–281. Springer, 2004.

10. K. L. McMillan. An interpolating prover. Theoretical Computer Science. To
appear.

11. K. L. McMillan. Applying sat methods in unbounded symbolic model checking.
In Computer-Aided Verification (CAV 2002), pages 250–264, 2002.

12. K. L. McMillan and N. Amla. Automatic abstraction without counterexamples. In
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), pages 2–17, 2003.

13. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. In Design Automation Conference, pages 530–535,
2001.

14. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(2):981–998, June 1997.

15. Hassen Säıdi and Susanne Graf. Construction of abstract state graphs with PVS.
In Orna Grumberg, editor, Computer-Aided Verification, CAV ’97, volume 1254,
pages 72–83, Haifa, Israel, 1997. Springer-Verlag.

16. M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induction
and a SAT-solver. In Formal Methods in Computer Aided Design, 2000.

17. J. P. M. Silva and K. A. Sakallah. GRASP–a new search algorithm for satisfia-
bility. In Proceedings of the International Conference on Computer-Aided Design,
November 1996, 1996.

18. R. Majumdar T. A. Henzinger, R. Jhala and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL 2002), 2002.


