
A Practical and Complete Approach to
Predicate Refinement

Ranjit Jhala and K. L. McMillan

1 University of California, San Diego
2 Cadence Berkeley Labs

Abstract. Predicate abstraction is a method of synthesizing the strongest
inductive invariant of a system expressible as a Boolean combination of a
given set of atomic predicates. A predicate selection method can be said
to be complete for a given theory if it is guaranteed to eventually find
atomic predicates sufficient to prove a given property, when such exist.
Current heuristics are incomplete, and often diverge on simple examples.
We present a practical method of predicate selection that is complete in
the above sense. The method is based on interpolation and uses a “split
prover”, somewhat in the style of structure-based provers used in arti-
ficial intelligence. We show that it allows the verification of a variety
of simple programs that cannot be verified by existing software model
checkers.

1 Introduction

Predicate abstraction [14] is a technique commonly used in software model check-
ing in which an infinite-state system is represented abstractly by a finite-state
system whose states are the truth valuations of a chosen set of atomic predicates.
The reachable state set of the abstract system corresponds to the strongest induc-
tive invariant of the infinite-state system expressible as a Boolean combination
of the given predicates.

Given a decision procedure for the underlying theory, predicate abstraction
can prove a property of a system exactly when the property is implied by a
quantifier-free inductive invariant of that system. That is, suppose that as sys-
tem has a quantifier-free inductive invariant ψ that implies some condition that
we wish to prove invariant and suppose we can supply the atomic predicates
occurring in ψ. Since predicate abstraction synthesizes the strongest inductive
invariant expressible as a Boolean combination of these predicates, it is guaran-
teed to generate an invariant as strong as ψ, and hence to prove the property.
There remains only the question of how to guess these atomic predicates. We
will say that a predicate selection heuristic is complete if it is guaranteed eventu-
ally to choose enough predicates to prove any given property φ, as long as there
is some quantifier-free inductive invariant of the system that implies φ. This
definition of completeness is strictly stronger than that of [1], which restricts
invariants to atomic predicates generated by the “pre” operator.

There is, of course, a trivial complete heuristic. Since the atomic predicates
are countable, one has only to enumerate them in a complete way. Each time we
generate a new predicate, we add it to our set, and try predicate abstraction.
Eventually our set of predicates will contain all the atomic predicates in ψ, and
we will prove the property.

Obviously, this approach is not practical. Since predicate abstraction is ex-
ponential (or worse!) in the number of predicates, a practical approach must
generate a sufficient set of predicates that is as small as possible. A number of
heuristic approaches based on computing weakest preconditions have been sug-
gested [8, 2, 3]. The approaches of [15, 7] derive predicates from proofs. None of
these is complete in the above sense (though [8] includes an acceleration heuristic
that may prevent divergence).

As an example of divergence of a predicate heuristic, consider the following
simple C program fragment:3

x = i; y = j;
while (x!=0) {x--; y--;}
if (i == j) assert (y == 0);

A typical predicate heuristic will examine counterexamples produced by model
checking the abstraction. A counterexample is a program execution path that
reaches an error state, and cannot be refuted using the available predicates (a
notion we will formally define later). Suppose our first counterexample passes
through the loop zero times (which means i = 0 initially). We might obtain
new predicates by computing the weakest precondition of the assertion in a
backward manner along the path. From this we obtain formulas containing the
atomic predicates i = j, x = 0, y = 0, i = 0 and j = 0. Using these predicates, we
obtain a counterexample in which the loop is executed once. Computing weakest
preconditions, we obtain the additional predicates x = 1, y = 1, i = 1, j = 1,
and so on. Thus, by analyzing counterexamples, we obtain a diverging sequence
of predicates in which the integer constants tend to infinity. On the other hand,
the predicates i = j, x = 0 and x = y are sufficient to prove the assertion (at
the level of basic blocks). The loop invariant is i = j ⇒ x = y. Thus, predicate
heuristics based on weakest precondition over counterexamples are incomplete,
essentially due to a failure to generalize.

Heuristics based on interpolation [7] are potentially more effective in focusing
on relevant predicates, but suffer from the same problem of divergence. In this
paper, we propose a method that is both heuristically useful and complete (in
the above limited sense). Like the method of [7], it is based on the computation
of interpolants from the refutation of counterexamples. However, in this case
the use of a specialized “split” prover allows us to restrict the language of the
interpolants in a way that prevents the atomic predicates from diverging as the
counterexamples become longer.

In the next section of the paper, we discuss the method of deriving predicates
from interpolants, which are in turn derived from the refutation of counterex-
3 Thanks to Anubhav Gupta for this example.

2

amples. We then show that by restricting the interpolants to a finite language L,
and gradually expanding this language, we can guarantee convergence of predi-
cate abstraction (when the property is provable). In section 3 we introduce the
notion of a split prover, and show that such a prover can be used to generate
interpolants in a restricted language, and thus can be used as a complete predi-
cate heuristic. In section 4, we describe an implementation of such a prover for a
particular theory. In section 5, we show that this method is capable in practice of
verifying programs that cannot be verified by existing heuristic methods because
of predicate divergence.

2 Predicates from interpolants

Throughout this paper, we will use standard first-order logic (FOL) and we
will use the notation L(Σ) to denote the set of well-formed formulas (wff’s) of
FOL over a vocabulary Σ of non-logical symbols. For a given formula or set of
formulas φ, we will use L(φ) to denote the wff’s over the vocabulary of φ.

For every non-logical symbol s, we presume the existence of a unique sym-
bol s′ (that is, s with one prime added). We think of s with n primes added
as representing the value of s at n time units in the future. For any formula or
term φ, we will use the notation φ〈n〉 to denote the addition of n primes to every
symbol in φ (meaning φ at n time units in the future). For any set Σ of symbols,
let Σ′ denote {s′ | s ∈ Σ} and Σ〈n〉 denote {s〈n〉 | s ∈ Σ}.

Modeling programs We will use first-order formulas to characterize programs.
To this end, let S, the state vocabulary, be a set of individual variables and
uninterpreted n-ary functional and propositional constants. A state formula is a
formula in L(S) (which may also include various interpreted symbols, such as =
and +). A transition formula is a formula in L(S ∪ S′). We require a technical
condition: a transition formula must contain an occurrence of every symbol in S
and S′. This condition can easily be made to hold by adding tautologies, such
as a = a.

A program will be represented (somewhat abstractly) by a pair (T ,Π) where
T is a set of transition formulas (representing program statements) and Π ⊂ T ∗

is a regular language representing the possible execution paths of the program.
For any sequence of transitions π = T1, . . . , Tn in T ∗, we will say the unfolding

U(π) of π is the sequence T 〈0〉
1 , . . . , T

〈n−1〉
n . For example, the unfolding of the error

path of our example program that executes the loop once is:

x〈1〉 = i〈0〉 ∧ y〈1〉 = j〈0〉 ∧ i〈1〉 = i〈0〉 ∧ i〈1〉 = j〈0〉

x〈2〉 = x〈1〉 − 1 ∧ y〈2〉 = y〈1〉 − 1 ∧ i〈2〉 = i〈1〉 ∧ j〈2〉 = j〈1〉

x〈2〉 = 0 ∧ i〈2〉 = j〈2〉 ∧ y〈2〉 6= 0

We will say that π is feasible when
∧
U(π) is consistent. We can think of a model

of
∧
U(π) as a concrete program execution, assigning a value to every program

3

variable at every time 0 . . . n. A program (T ,Π) is said to be infeasible when
every path in Π is infeasible. The problem of safety verification can be reduced
to infeasibility by intersecting Π with the language of paths leading to “error”
states.

Predicate abstraction Given a set of predicates β, we will say that strongest
β-postcondition of a state formula φ with respect to transition T , denoted spβ

T (φ),
is the strongest Boolean combination ψ over β such that φ∧T implies ψ〈1〉. That
is, spβ

T (φ) is the strongest Boolean formula expressible over β that must be true
after executing T from a state satisfying φ. We define the notion of strongest
β-postcondition over sequences of transitions by induction over the sequence:

spβ
ε (φ) = φ

spβ
π·t(φ) = spβ

t (spβ
π(φ))

A sequence π of transitions is β-refutable when spβ
π(True) ≡ False. Further,

a program (T ,Π) is β-refutable when every path in Π is β-refutable. This is
exactly the condition tested by predicate abstraction. That is, predicate abstrac-
tion can verify a program to be infeasible using predicates β exactly when the
program is β-refutable. We will say that a verifier is a procedure that takes
a program as input and returns True or False, or diverges. It is sound if it
returns True only when the program is infeasible. Moreover:

Definition 1. A verifier V is complete for predicate abstraction, if, for all pro-
grams A = (T ,Π), V converges on A returning True if A is β-refutable for
some set β of atomic predicates.

Interpolants from proofs Given a pair of formulas (A,B), such that A ∧
B is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â ⊆ L(A) ∩ L(B).

The Craig interpolation lemma [5] states that an interpolant always exists for
inconsistent formulas in FOL. To allow us to speak of interpolants of program
paths, we generalize this idea to sequences of formulas. That is, given a sequence
of formulas Γ = A1, . . . , An, we say that Â0, . . . Ân is an interpolant for Γ when

– Â0 = True and Ân = False and,
– for all 1 ≤ i ≤ n, Âi−1 ∧Ai implies Âi and
– for all 1 ≤ i < n, Âi ∈ (L(Ai) ∩ L(Ai+1)).

That is, the i-th element of the interpolant is a formula in the common language
of Ai and Ai+1, and is provable from the first i elements of Γ .

4

If Γ is quantifier-free, we can derive a quantifier-free interpolant for Γ from a
refutation of Γ , in certain interpreted theories [11]. This fact was exploited in [7]
to derive predicates for predicate abstraction. This is based on the following
result, where AP (φ) denotes the set of atomic predicates in φ:

Theorem 1. Given a set of atomic predicates β, a program path π = A1, . . . , An

is β-refutable iff U(π) has a quantifier-free interpolant Â0, . . . , Ân such that for
all 1 ≤ i < n, AP (Âi) ⊆ β〈i〉.

Proof. For the only if direction, we observe that the sequence P̂0, . . . , P̂n,
where P̂i = spβ

A1,...,Ai
(True)〈i〉, is a suitable interpolant (guaranteeing that

P̂i ∈ (L(Ai−1)∩L(Ai)) requires our technical condition on transition formulas).
For the if direction, we show by induction that Pi (as defined above) implies Âi,
hence spβ

π(True) ≡ False. 2

If a counterexample path π is not β-refutable for the current set of pred-
icates β we can compute an interpolant for π, and augment β by adding the
atomic predicates occurring in the interpolant (dropping the primes). Thus, π
becomes β-refutable. For example, a possible interpolant for the error path ex-
ample above is

True, (x〈1〉 = i〈1〉 ∧ y〈1〉 = j〈1〉), (x〈2〉 = i〈2〉 − 1 ∧ y〈2〉 = j〈2〉 − 1),False

From this we derive the predicates x = i,y = j,x = i − 1 and y = j − 1.
This gives us a predicate heuristic (used in [7]) that is guaranteed to rule out
any given counterexample path, but may produce predicates that diverge as the
number of loop iterations increases. To prevent this divergence, we propose in
this work to restrict the interpolants to some finite language L. For example, we
could restrict L to contain numeric constants only in some fixed range, and thus
prevent constants in the predicates from tending to infinity.

Definition 2. Given a language L, an L-restricted interpolant for Γ = A1, . . . , An

is an interpolant Â0, . . . Ân for Γ , such that each Âi ∈ L.

By gradually enlarging the restriction language L, we obtain a complete
procedure. That is, let us define a chain of finite, quantifier-free, propositionally
closed languages L0 ⊆ L1 ⊆ · · · such that every atomic predicate is contained in
some Li. We can then use the following procedure for program verification:

procedure Relax(A)
let k = 0 and β = ∅
repeat

if A is β-refutable return True
else let π be a non-β-refutable path of A in

if π has an Lk-restricted interpolant Â0, . . . Ân

then let β = β ∪ {p | p〈i〉 ∈ AP (Âi), for some 1 ≤ i < n}
else let k = k + 1

5

That is, as long as the counterexamples produced by predicate abstraction are
refutable using predicates in language Lk we continue using Lk-restricted inter-
polants to generate predicates. When we obtain a counterexample not refutable
in Lk, we move on to Lk+1.

Theorem 2. Procedure Relax is complete for predicate abstraction.

Proof. Theorem 1 tells us that each interpolant must contain some atomic
predicate not in β. Thus in every iteration of the loop, either β increases, or k
increases. Since β ⊆ Lk, it cannot increase unboundedly without increasing k.
Thus either the procedure terminates, or k increases unboundedly. Now suppose
program A is β-refutable. β must be contained in some Lm. We know k cannot
increase beyond m, since by Theorem 1, every path of A has an Lm-restricted
interpolant. Thus the procedure terminates (and returns True). 2

Of course, the choice of restriction languages Lk is a heuristic one, and we
would like to make that choice in a way that will lead to rapid convergence.
One observation we can make in this area is that invariants of loops rarely
contain large numeric constants. Thus, we might define Lk so as to contain
numeric constants no larger in absolute value than k. This heuristic is effective
for our example program. Note that L0 does not contain the interpolant we
obtained above for our example path (since it contains the constant 1). Thus,
it forces us to choose an interpolant like this: True,(x〈1〉 = i〈1〉 ∧ y〈1〉 = j〈1〉),
(i〈2〉 = j〈2〉 ⇒ x〈2〉 = y〈2〉), False. This yields predicates x = i,y = i,x = j
and x = y, which are adequate to prove the program. One way to view this is
that the inability to use the specific constant 1 forces us to generalize. Thus, the
verification terminates at L0.

3 The split prover

The problem of predicate selection has now been reduced to finding an L-
restricted interpolant for a given sequence of formulas A1, . . . , An. As in [11]
we derive interpolants from proofs. However, we restrict the interpolants to for-
mulas in L by placing a restriction on allowable proofs. We define a notion of
split proof in which all reasoning is local. That is, each deduction step is labeled
by some Ai, such that both its antecedents and consequence are contained in
L(Ai), and the deduction depends only on Ai. This is as if we have n commu-
nicating provers, each of which knows one Ai, and can see the results of other
provers only if they are over the vocabulary of Ai. To be more precise:

Definition 3. A split proof over a set of hypotheses Γ is a triple (V,E, P), such
that V is a set of formulas, (V,E) is a directed acyclic graph, and P is a labeling
function V → Γ , and

– for all edges (g, f) ∈ E, we have g, f ∈ L(P (f)), and
– preds(f), P (f) |= f .

where preds(f) = {g | (g, f) ∈ E}. A split refutation of Γ is a split proof over Γ
whose unique leaf is the formula False.

6

In order to restrict the interpolants to a given language L, we have only to
restrict the set of formulas that can be communicated between provers:

Definition 4. An L-restricted split proof over a set of hypotheses Γ is a split
proof (V,E, P) over Γ , such that, for all edges (f, g) ∈ E, if P (f) 6= P (g), then
f ∈ L.

We will say that a sequence of hypotheses Γ = {A1, . . . , An} is strict if
the vocabularies of Ai and Aj only intersect when i − 1 ≤ j ≤ i + 1 (i.e., if
only nearest neighbors share non-logical symbols). This condition is satisfied by
program path unfoldings. We can now show the following:

Theorem 3. Given a strict sequence of hypotheses Γ = {A1, . . . , An}, and a
propositionally closed language L, Γ has an L-restricted interpolant if and only
if it has an L-restricted split refutation.

Proof. The only if is straightforward, since the interpolant itself acts as
the refutation. That is, each formula in the interpolant proves the next, given
the next hypothesis, and each is over the common language of neighboring hy-
potheses. For the if direction, we construct an interpolant from the proof as
follows. First, we rewrite the proof so that every edge is between vertices with
distinct labels. If an edge (f, g) is such that P (f) = P (g), we eliminate it by
adding preds(f) to preds(g). Now we transform each vertex f into the formula
f ′ =

∧
preds(f) ⇒ f . We then create new strict hypotheses Γ ′ = {A′

1, . . . , A
′
n}

where A′
i = {f ′ |P (f) = Ai}. Note that Ai implies A′

i and A′
i ∈ L(Ai), by

definition 3, and A′
i ∈ L, by definition 4. This set of formulas is propositionally

unsatisfiable (i.e., no truth assignment to the atoms makes it true). Therefore,
we can construct a propositional interpolant for it, without introducing new
atoms, by the method of [10] (this step requires strictness). Since each Ai im-
plies A′

i, it follows that this is also an interpolant for A1, . . . , An, and moreover
it is L-restricted. 2

The proof of this theorem also gives us a procedure for constructing an L-
restricted interpolant from an L-restricted split proof. We transform the proof
into a sequence of formulas, refute this sequence propositionally, and then derive
the interpolant from the propositional refutation. This is actually a polynomial-
time operation, since the refutation can be done by unit resolution (i.e., BCP).

The key question is how to find a suitable split proof. Proofs generated by an
arbitrary prover will not in general fit our restrictions. Interestingly, this question
has been studied in the artificial intelligence community, for the purpose not of
generating interpolants, but of creating more efficient provers by localizing the
proof effort. The method is based on the notion of consequence finding.

A consequence finder is a function that takes a set of hypotheses Γ in its input
language and generates a set of consequences of Γ . For a given language L, we
will say that a consequence finder R is complete for L-generation when every
consequence of Γ in L is implied by R(Γ). That is, to be complete R need not
generate every consequence of Γ in L, but it must preserve all consequences of
Γ expressible in L. To be more formal:

7

Definition 5. A consequence finder R, with input language L(R) is a function
P(L(R)) → P(wff) that is monotone, ∪-continuous, and such that, for every
φ ∈ R(Γ), Γ |= φ.

Definition 6. Given a language L, a consequence finder R is complete for L-
generation iff, for every formula f ∈ L, if Γ |= f , then R(Γ) ∩ L |= f .

We now use this notion of consequence finding to build a prover that con-
structs split proofs. For each partition Ai, we construct a consequence finder Ri

that is complete for L(Ai−1)-generation and for L(Ai+1)-generation. In other
words, each prover can generate all consequences in the languages of its neigh-
bors. The initial input of Ri is just Ai. Each time a consequence φ is generated
by some Ri, it is added to the input of every Rj such that φ ∈ L(Aj). We can
formalize this notion of a combination of local consequence finders as follows:

Definition 7. Let R be an indexed set of consequence finders {R1, . . . ,Rn}.
The composition of R, denoted ⊗R, is a function that takes an indexed set of
hypotheses Γ = {A1, . . . , An}, such that L(Ai) ⊆ L(Ri), and returns the least
fixed point of function F , where

F(Q) =
⋃
i

Ri(Ai ∪ (Q ∩ L(Ri)))

Note that the monotonicity of consequence finders guarantees the existence of
the least fixed point of F in the above definition. In [9] it is shown (in a somewhat
more general setting) that such a split prover is complete for refutation in FOL:

Theorem 4 ([9]). Let Γ = {A1, . . . , An} be a strict sequence of hypotheses in
FOL, and let R = R1, . . . ,Rn be an indexed set of consequence finders, such that
L(Ri) = L(Ai). If for every 1 ≤ i < n, Ri is complete for L(Ai+1)-generation,
then False ∈ (⊗R)(Γ) iff Γ is inconsistent.

This is a simple consequence of Craig’s interpolation lemma. That is, as-
suming Ri receives enough facts to prove component Âi of the interpolant, it
produces enough facts to imply Âi+1. Thus we must derive Ân, which is false.

In [9], various resolution strategies are discussed which are complete for L(Σ)-
generation in FOL, where Σ is an arbitrary vocabulary of non-logical symbols.
This makes it possible to construct a complete split prover for FOL. Our concern,
however, is not to implement a complete prover, but rather a prover that is
“complete” for generation of L-restricted split proofs, for a particular language L.
Our approach to this is to restrict communication between consequence finders
to just sentences in the restriction language L:

Definition 8. Let R be an indexed set of consequence finders R1, . . . ,Rn, and
let L be a language. The L-restricted composition of R, denoted ⊗LR, is
a function that takes indexed set of hypotheses Γ = {A1, . . . , An}, such that
L(Ai) ⊆ L(Ri), and returns the least fixed point of function F , where

F(Q) =
⋃
i

Ri(Ai ∪ (Q ∩ L(Ri) ∩ L))

8

We can show that the L-restricted split prover defined above is complete for
generation of L-restricted split refutations, provided the consequence finders are
complete for L-generation:

Theorem 5. Let Γ = {A1, . . . , An} be a strict sequence of hypotheses in FOL,
and let R = {R1, . . . ,Rn} be an indexed set of consequence finders, such that
L(Ri) = L(Ai), and let L be an arbitrary language. If for each 1 ≤ i < n, Ri

is complete for (L(Ai+1)∩L)-generation, then False ∈ (⊗LR)(Γ) iff Γ has an
L-restricted split refutation.

Proof. For the if direction, if Γ has an L-restricted split refutation, it has an
L-restricted interpolant Â0, . . . , Ân (by theorem 3). By induction on i, each Ri

must generate facts implying Âi, since it is complete for (L(Ai+1)∩L)-generation.
Thus Rn generates False. For the only if direction, we show by induction that
each fact f ∈ (⊗R)(Γ) has an L-restricted split proof. The function F is a finite
union of ∪-continuous functions and so is ∪-continuous. Therefore, by the Tarski-
Knaster theorem f must occur in some fixed point iteration Fj(∅). Thus f is
a consequence of some facts Θ ⊆ Fj−1(∅), generated by some Ri. By inductive
hypothesis, these facts have L-restricted split proofs. Thus f has an L-restricted
split proof. 2

An immediate consequence is, of course, that the L-restricted split prover
generates a proof exactly when Γ has an L-restricted interpolant, and moreover
this proof can be translated directly into an interpolant (Theorem 3).

Note that the above framework allows for the possibility of infinitary proofs
(where a consequence has an infinite number of antecedents). In practice, of
course, we must have an effective procedure for enumerating consequences (i.e.,
the consequences of an RE set must be RE). This rules out infinitary proofs. For
completeness we do not require that the consequence finders return finite sets.

4 Implementing a split prover

In this section we describe an attempt to implement an efficient split prover for
a limited theory. Our wff’s are limited to quantifier-free first-order sentences,
with equality, separation predicates (difference bounds), and restricted use of
the array operators “select” and “store”. The only arithmetic predicates allowed
in the theory are of the form x − y ≤ c, x ≤ c and c ≤ x, where c is an
integer constant. This simple theory appears to be sufficient to handle many
properties of programs that manipulate arrays. The prover is complete for split
proof generation for rational models, but not (yet) for integer models. The prover
generates interpolants in a restriction language L. This language is defined by
a finite set CD of constants that may occur in difference bounds of the form
x − y ≤ c, and a finite set CB of constants that may occur in absolute bounds
of the form x ≤ c or x ≥ c. To make L finite, we also require a bound bf on the
nesting depth of uninterpreted function symbols.

There is not space here to discuss all of the issues involved in constructing
an efficient prover. Rather, we will give an informal overview of the main fea-
tures of the prover, with emphasis on the issues that differentiate a split prover

9

from a non-split prover. For efficiency, we separate the propositional reasoning
from the theory reasoning. Propositional reasoning is handled by an efficient
Boolean satisfiability (SAT) solver, similar to Chaff [12]. We construct complete
consequence finders for the several theories, and combine them using the Nelson
Oppen approach [13]. As in that method, we rely on convexity of the theories
to avoid generating disjunctions, and we split cases when necessary to eliminate
non-convexities.

Coupling of propositional and theory reasoning is done in the “lazy” man-
ner, as in [6]. The SAT solver tests whether the entire set of hypotheses Γ =
{A1, . . . , An} is propositionally consistent. If so, it produces a propositional sat-
isfying assignment as a set of literals W. This set is partitioned into subsets
{W1, . . . ,Wn}, such that each atom of Wi occurs in Ai. This set of hypotheses is
then passed to the split theory prover for refutation. The hypotheses used in the
generated refutation are collected, and their dual is passed to the SAT solver as
a “blocking clause” – a tautology that rules out the given satisfying assignment.
The process continues until the either the system becomes propositionally unsat-
isfiable (and thus Γ is refuted) or until some propositional satisfying assignment
cannot be refuted. The propositional decision procedure need not be “split”.
Rather the propositional proof and the split proofs of the blocking clauses can
be combined as in [11]. The interpolant derived from this combined proof is still
guaranteed to be L-restricted, since the propositional interpolation rules do not
generate new atoms.

By separating propositional and theory reasoning in this way, we limit the
hypotheses of the split prover to just sets of literals. This greatly simplifies conse-
quence generation. In particular, it allows us to take advantage of the convexity
of a given theory, as in [13]. We will say that a complete consequence finder
is convex if it generates only Horn clauses (clauses with at most one positive
literal). If our consequence finders are convex, then we can further restrict the
language L by which the provers communicate to contain only positive literals.
This is because unit resolution is complete for Horn clause refutation (and is
exploited in the Nelson Oppen method).

Difference bounds The problem is thus reduced (in the convex case) to one of
“unit” consequence finding in the given theory, in the given language L. We will
begin with the theory of difference bounds (considering rational models first). For
this theory, we use the linear combination rule to generate consequences. This
derivation rule takes as antecedents two inequalities 0 ≤ x and 0 ≤ y (where x
and y are arbitrary terms) and derives an inequality 0 ≤ c1x + c2y, where c1
and c2 are positive constants. We restrict use of the rule to just cases where the
consequent is a difference bound. For example, from x ≤ y + 2 and y ≤ z + 3,
we can derive x ≤ z + 5. We can discard consequences that are subsumed by
previously generated consequences, and we terminate if a contradiction (say,
0 ≤ −1) is derived. This rule is complete for consequence generation over a
given vocabulary (applying it exhaustively amounts to an all-pairs shortest path

10

computation on a graph whose vertices are terms and whose edges are labeled
with difference bounds).

The rule is not complete, however, for consequence generation in our restric-
tion language L. Consider the case, for example, where we can derive x ≤ y− 1,
but the set CD of allowed difference constants is just {0}. Thus x ≤ y − 1 is
not in L, but its consequence x ≤ y is in L. Unfortunately, x ≤ y cannot be
derived by the linear combination rule. To remedy this, we add a weakening rule,
that derives from an inequality 0 ≤ x a weaker inequality 0 ≤ x + c, where c
is a positive constant. This rule is used to derive the strongest consequence of
any inequality that is contained in L. With this rule, and similar rules for strict
inequalities, our system is complete for L-generation over the rationals.

Equality and uninterpreted functions Next, we consider equality and un-
interpreted function symbols. For this theory, we use the usual derivation rules
for equality: symmetry, reflexivity, transitivity and congruence, along with the
contradiction rule (any literal and its negation imply False). These rules are
complete for unit consequence finding. They are not, however, finitely terminat-
ing, because of the congruence rule. For example, given a = b, we will derive
f(a) = f(b), f(f(a)) = f(f(b)), and so on. Though termination is not necessary
for completeness, it is, of course, desirable in practice. For purposes of refuta-
tion, we can force termination by restricting the congruence rule to generate only
terms that occur in the hypotheses. This is done in the usual congruence clo-
sure approach (completeness of this approach is another consequence of Craig’s
interpolation lemma). However, this method is not complete for consequence
finding. Suppose, for example, we have the hypotheses a = b and f(a) = c,
and L = L({b, c, f}). There are no consequences in this language over just the
terms a, b, c, f(a). However, f(b) = c is derivable. We can remedy this deficit
by allowing the congruence rule to derive equalities over any terms occurring
in the hypotheses or having function nesting depth within our bound bf . Since
this is a finite set of terms, our rules are now terminating, and complete for
L-consequence generation.

We combine difference bound and equality reasoning in the manner of Nelson
and Oppen [13]. That is, we compose two consequence finders, one for difference
bounds and one for equality. For difference bounds, complete consequence gen-
eration in the language of equality is achieved by a rule that derives a = b from
a ≤ b and b ≤ a. For equality, complete consequence generation in the language
of difference bounds is obtained by a rule that derives a ≤ b and b ≤ a from
a = b.

The theory of arrays The first-order theory of arrays provides two interpreted
functions select and store. The term select(a, n) represents the n-th element of
array a, while store(a, n, b) is the array resulting from setting the n-th element
of array a to value b. These functions obey the following axioms:

select(store(a, n, b), n) = b

11

n 6= n′ ⇒ select(store(a, n, b), n′) = select(a, n′)

The second axiom is problematic on two counts. First, it generates an infinite
set of quantifier-free consequences. For example, if we have the hypothesis a′ =
store(a, n, b), then we can derive select(a′, n+ 1) = select(a, n+ 1), select(a′, n+
2) = select(a, n+ 2), There is one such consequence for every term provably
not equal to n. Although there is a finite number of such terms occurring in L,
enumerating them all would still be extremely inefficient. However, we can avoid
this difficulty by restricting the use of arrays. That is, we allow array-valued
terms to occur in Ai only as the first argument of select and in expressions of
the following form:

a′ = store(store(. . . store(a, n1, b1), n2, b2) . . . , nk, bk)

where a′ does not occur in Ai−1 and a does not occur in Ai+1. This corresponds
to the way in which arrays are used in imperative programs (that is, once the
array is modified, the old value of the array is no longer accessible). In this case,
it suffices to instantiate the second array axiom only for terms n′ that occur as
array indices in some select or store term (as no consequences are possible for
other array indices in L(Ai−1) or L(Ai+1)).

The second problem is the non-convexity of the array theory. That is, the
second axiom is in effect a disjunction of positive literals. In the case where we
cannot infer the truth value of either literal in the disjunction, and we cannot
otherwise obtain a refutation, we simply abandon the proof and introduce the
clause (n = n′ ∨ n 6= n′) into the SAT solver, causing it to decide the value
n = n′, and thus eliminate the non-convexity. This tactic is also used in various
“lazy” decision procedures.

Integer models For program verification, we need to interpret formulas over
integer models. This is problematic, since integer difference-bound arithmetic is
non-convex when L includes equality formulas. In fact, deciding consistency of
a set of literals in this theory is already NP-complete. Moreover, our additional
restrictions on L introduce additional non-convexity. For example, suppose that
CD = {0} and we have x ≤ j and y ≤ x + 1. The disjunction x ≥ y ∨ y ≤ j is
a consequence, but is not implied by any unit consequence in L. At this point
we have not attempted to tackle the problem of a complete and heuristically
efficient split prover for integers. Rather, we have added two simple rules that
seem to be adequate in most practical cases for programs manipulating arrays.
The first derives a ≥ b+ 1 from ¬(a ≤ b) and the second derives a ≥ b+ 1 from
a ≥ b and a 6= b.

Unfoldings in SSA form A common optimization used, e.g., in [7] is to write
the unfolding of a program path in the more compact “static single-assignment”
form (SSA). This can also be done with the split prover, if we relax our require-
ment of strictness in the unfolding (i.e., that each time frame shares symbols
only with its nearest neighbors). This complicates the above theory, but does not

12

Outcome SatAbs Magic Blast (old) Blast (new)

Verified 0 0 8 12
Refinement failed 13 13 0 0
Did not finish 0 0 5 1

Table 1. Outcomes on test programs

present any difficulty in practice. Further, since in this scheme a fact may be de-
duced by many consequence finders, we adopt an approach in which such a fact
is deduced only once, and its derivation labeled with the range of time frames
in which it is deduceable. Thus, we can more efficiently handle long unfoldings.

5 Experiments

To test the split prover as a predicate heuristic, we wrote a collection of small C
programs containing loops and decorated with assertions.4 The assertions are
all provable by quantifier-free invariants, and thus by predicate abstraction. All
require non-trivial invariants, in the sense that the loop index variable(s) must
occur in the invariants. Most of the programs perform operations on arrays or
zero-terminated C strings, such as filling, copying, concatenating and substring
extraction. We tested four predicate abstraction tools on these programs: Sa-
tAbs [4], Magic [3], Blast [7] without the split prover (old), and Blast with
the split prover (new). The outcomes are tabulated in Table 1. SatAbs and
Magic, whose predicate heuristics are based on weakest preconditions, are un-
able to verify any of the 13 programs.5 In all cases, the predicate refinement
step fails to produce new predicates at some point (except for three cases in
which Magic incorrectly produces counterexamples). Blast, whose predicate
heuristic is based on interpolation, verifies 8 of the 13 examples without using
the split prover. On the remaining 5, the constants in the predicates diverge to
infinity (or toward some intractably large upper bound).

For the split prover version of Blast, we define the restriction language Lk

by CD = {−k, . . . , k} and CB = {c + d | c ∈ CP , d ∈ CD}, where CP is the
set of numeric constants occurring in the program. That is, we allow difference
bounds nearby to zero, and absolute bounds (such as x ≤ c) nearby to some
constant occurring in the program. The latter are useful for loops whose upper
or lower bounds are fixed constants. As we increase k, we gradually expand
the set of available constants until an inductive invariant can be expressed. For
these programs, we do not require a limit bf on function symbol nesting, since
no functions are iterated (we might require a limit, for example, if the programs
traversed linked lists). Using this heuristic, we find that 12 of the 13 programs
can be verified. All successful runs complete in under 30 seconds. In one case,

4 Available at http://www-cad.eecs.berkeley.edu/~kenmcmil.
5 For SatAbs, we used version 1.1 with default settings. For Magic, we used version

1.0 with --optPred --predLoop 2.

13

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

R
un

 ti
m

e,
 s

pl
it

pr
ov

er

Run time, non-split prover

Fig. 1. Run time comparison of split and unsplit provers

we time out because a loop requires the invariant i ≤ j <= 200, which does not
occur until L200. In this case, it appears that our notion of CD requires some
adjustment – perhaps allowing difference bounds nearby the large constants in
the program.

To test the performance of the split prover, we compare it with the non-split
interpolating prover of [11], which uses a conventional Nelson Oppen procedure
for theory reasoning. Figure 1 plots run times in seconds for the set of unfoldings
generated in verifying the two largest device driver examples from [7], with the
split prover restricted to L0. Two unfoldings that could not be refuted using L0

were removed. Each point represents one unfolding. It can be seen that the split
prover is only slightly less efficient than the unsplit prover.

6 Conclusion and future work

Existing predicate heuristics are incomplete, in that they may fail to find an
adequate set of predicates when one exists. However, by restricting the predi-
cates to a finite set, and progressively relaxing this restriction, we can obtain a
complete method. In an interpolant-based approach, this can be done using a
“split prover” that restricts the language of communication between time frames.
We have shown that a practical split prover can be built, at least for difference
bound arithmetic over the rationals. Moreover, a suitable choice of restriction
language allows us to verify programs for which existing methods fail in practice.
Thus, we have a predicate heuristic that is both theoretically complete and prac-
tically useful. For future work, it would be useful to expand the prover beyond
difference bound arithmetic (though it is not clear what a suitable restriction
language would be in this case) and to handle additional theories, such as the
theory of bit vectors.

The main limitation of the method is a limitation of predicate abstraction
itself, which cannot synthesize quantified invariants. For example, consider the
following simple C program:

14

for(i = 0; i < n; i++) x[i] = 0;
for(i = 0; i < n; i++) assert(x[i] == 0);

An invariant for this program requires a quantifier. Though in principle predicate
abstraction can use quantified predicates, they must be provided by the predicate
heuristic – predicate abstraction cannot synthesize them from atomic formulas.
The next step in this work is to produce quantified predicates. Some preliminary
results have been obtained in this area. For example, by removing the restriction
that interpolants be quantifier-free, we can obtain sufficient quantified predicates
to verify the above program (including the invariant for the first loop ∀j. (0 ≤
j < i) ⇒ x[j] = 0).6 Ultimately the goal is to extend the range of predicate
abstraction to a richer class of programs and properties.

Acknowledgment. The authors thank Tal Lev-Ami for pointing out related
work in Artificial Intelligence.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In TACAS, pages 158–172, 2002.

2. T. Ball and S. K. Rajamani. Generating abstract explanations of spurious coun-
terexamples in c programs. Technical Report MSR-TR-2002-09, Microsoft, 2002.

3. S. Chaki, E. M. Clarke, A. Groce, and O. Strichman. Predicate abstraction with
minimum predicates. In CHARME, pages 19–34, 2003.

4. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI–C programs using SAT. Formal Methods in System Design (FMSD), 25:105–
127, September–November 2004.

5. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

6. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In CADE, pages 438–455, 2002.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244, 2004.

8. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by
abstraction. In TACAS, pages 98–112, 2001.

9. S. McIlraith and E. Amir. Theorem proving in structured theories (full report).
Technical Report KSL-01-04, Stanford, 2001.

10. K. L. McMillan. Interpolation and sat-based model checking. In CAV, pages 1–13,
2003.

11. K. L. McMillan. An interpolating theorem prover. In TACAS, pages 16–30, 2004.
12. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an efficient SAT solver. In Design Automation Conference, pages 530–535,
2001.

13. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Prog. Lang. and Sys., 1(2):245–257, 1979.

14. H. Säıdi and S. Graf. Construction of abstract state graphs with PVS. In CAV,
pages 72–83, 1997.

15. R. Majumdar T. A. Henzinger, R. Jhala and G. Sutre. Lazy abstraction. In POPL,
pages 58–70, 2002.

6 Thanks to Daniel Kröning for integrating this in SatAbs.

15

