
An Interpolating Theorem Prover

K. L. McMillan

Cadence Berkeley Labs

Abstract

We present a method of deriving Craig interpolants from proofs in the quantifier-free
theory of linear inequality and uninterpreted function symbols, and an interpolating
theorem prover based on this method. The prover has been used for predicate refine-
ment in the Blast software model checker, and can also be used directly for model
checking infinite-state systems, using interpolation-based image approximation.

Key words: Craig interpolation, Model Checking, Decision procedures,
Infinite-state systems
PACS:

1 Introduction

A Craig interpolant [2] for an inconsistent pair of logical formulas (A,B) is a
formula φ that is implied by A, inconsistent with B and refers only to uninter-
preted symbols common to A and B. If A and B are propositional formulas,
and we are given a refutation of A ∧ B by resolution steps, we can derive an
interpolant for (A,B) in linear time [5,12]. This fact has been exploited in
a method of over-approximate image computation based on interpolation [7].
This provides a complete symbolic method of model checking finite-state sys-
tems with respect to linear temporal properties. The method is based entirely
on a proof-generating Boolean satisfiability solver and does not rely on quanti-
fier elimination or reduction to normal forms such as binary decision diagrams
(BDD’s) or conjunctive normal form. In practice it was found to be highly ef-
fective in proving localizable properties of large sequential circuits.

Here we present a first step in expanding this approach from propositional to
first-order logic, and from finite-state to infinite-state systems. We present an
interpolating prover for a quantifier-free theory that includes linear inequal-
ities and equality with uninterpreted function symbols. As in [3] the prover
combines a Boolean satisfiability solver with a proof-generating decision pro-
cedure for ground clauses. After generating a refutation for A∧B, the prover

Preprint submitted to Elsevier Science 3 January 2005

derives from this refutation an interpolant φ for the pair (A,B). The main
contribution of this work is to show how to derive quantifier-free interpolants
from proofs in the combined theories of linear inequality and equality with un-
interpreted function symbols (LIUF). This extends earlier work that handles
only linear inequalities [12]. The combination of theories is useful, for example,
for applications in software model checking.

It is important to note that we are deriving quantifier-free interpolants from
quantifier-free formulas. As we will observe later, this is crucial for applica-
tions in formal verification, such as image approximation and predicate ab-
straction. In Craig’s original work on interpolants [2], unwanted individual
symbols were eliminated by simply quantifying them. Here, we must take a
different approach, to avoid introducing quantifiers in the interpolants.

The interpolating prover has been applied in the Blast software model check-
ing system [4]. This system is based on predicate abstraction [13], and uses
interpolants as a guide in generating new predicates for abstraction refinement.
The approach resulted in a substantial reduction in abstract state space size
relative to earlier methods. Further, using the method of [7], the prover can
be used directly to verify some infinite-state systems, such as the Fischer and
“bakery” mutual exclusion protocols. In principle, it can also be applied to
the model checking phase of predicate abstraction.

This paper is organized as follows. In section 2, we introduce a simple proof
system for LIUF, and show how refutations in this system can be translated
into interpolants. Section 3 discusses the practicalities of constructing an effi-
cient interpolating prover using this system. Finally, section 4 discusses actual
and potential applications of the interpolating prover.

2 Interpolants from Proofs

We now describe a system of rules that, given a refutation of a pair of clause
sets (A,B), derive an interpolant φ for the pair. For the sake of simplicity, we
begin with a quantifier-free logic with linear inequalities (LI). Then we treat
a logic with equality and uninterpreted functions (EUF). Finally, we combine
the two theories.

2.1 Linear inequalities

A term in this logic is a linear combination c0 + c1v1 + · · · cnvn, where v1 . . . vn

are distinct individual variables, c0 . . . cn are rational constants, and further

2

c1 . . . cn are non-zero. When we perform arithmetic on terms, we will assume
they are reduced to this normal form. That is, if x is a term and c is a non-
zero constant, we will write cx to denote the term obtained by distributing
the coefficient c inside x. Similarly, if x and y are terms, we will write x + y
to denote the term obtained by summing like terms in x and y and dropping
resulting terms with zero coefficients. Thus, for example, if x is the term 1+a
and y is the term b− 2a then 2x+ y would denote the term 2 + b.

An atomic predicate in the logic is either a propositional variable or an in-
equality of the form 0 ≤ x, where x is a term. A literal is either an atomic
predicate or its negation. A clause is a disjunction of literals. We will write the
clause containing the set of literals Γ as 〈Γ〉. In particular, we will distinguish
syntactically between a literal l and the clause 〈l〉 containing just l. The empty
clause, equivalent to false, will be written 〈〉.

A sequent is of the form Γ ` ∆, where Γ and ∆ are sets of formulas (in
this case, either literals or clauses). The interpretation of Γ ` ∆ is that the
conjunction of the formulas in Γ entails the disjunction of the formulas in ∆.
In what follows, lower case letters generally stand for formulas and upper
case letters for sets of formulas. Further, a formula in a place where a set
is expected should be taken as the singleton containing it, and a list of sets
should be taken as their union. Thus, for example, the expression Γ, φ ` p,A
should be taken as an abbreviation for Γ ∪ {φ} ` {p} ∪ A.

Our theorem prover generates refutations for sets of clauses using the following
proof rules: 1

Hyp
Γ ` φ

φ ∈ Γ Comb
Γ ` 0 ≤ x Γ ` 0 ≤ y

Γ ` 0 ≤ c1x+ c2y
c1,2 > 0

Contra
¬p1, . . . ,¬pn `⊥

Γ ` 〈p1, . . . , pn〉
‡ Res

Γ ` 〈p,Θ〉 Γ ` 〈¬p,Θ′〉

Γ ` 〈Θ,Θ′〉

In the above, ⊥ is a shorthand for 0 ≤ −1 (note this is semantically equivalent
but not identical to 〈〉). Also, in the Contra rule, the symbol ‡ indicates
that all atomic predicates occurring on the right hand side of the consequent
must occur on the left. This requirement is not needed for soundness, but our
interpolation rules will rely on it. In effect, it prevents us from introducing
new atomic predicates in the proof, thus ensuring that proofs are cut-free. All
Boolean reasoning is done by the resolution rule Res.

1 Note, this system is not complete, since it has no rule to deal with negated in-
equalities. Later, after we introduce the equality operator, we will obtain a complete
system for the rationals.

3

We will use the notation φ � Γ to indicate that all variables and uninterpreted
function symbols occurring in φ also occur in Γ. A term x is local with respect
to a pair (A,B) if it contains a variable or uninterpreted function symbol not
occurring in B (in other words x 6� B) and global otherwise.

In order to represent the rules for deriving interpolants from proofs, we will
define several classes of interpolations. These have the general syntactic form
(A,B) ` ψ [X], where the exact form of X varies. Intuitively, X is a represen-
tation of an “interpolant” associated with the deduction of ψ from A and B.
In the case where ψ is the empty clause, X should in fact be an interpolant
for (A,B). In general, X represents some fact that is derivable from A, and
that together with B proves ψ.

For each class of interpolation, we will define a notion of validity. This defi-
nition consists of three conditions, corresponding to the three conditions for
interpolants – the first ensures that A implies the interpolant, the second
ensures that A and B together imply ψ, and the third ensures that the in-
terpolant is over common variables. We will then introduce derivation rules
that are sound, in the sense that they derive only valid interpolations from
valid interpolations. We will sketch a proof of soundness for each rule, except
in trivial cases.

We begin with the derivation of inequalities. This is done by summing up
inequalities drawn from A and B, using the Comb rule. As observed in [12],
the contribution to this sum from A is effectively an interpolant. For example,
suppose A contains 0 ≤ w − x and 0 ≤ x − y, while B contains 0 ≤ y − z.
Summing these, we obtain 0 ≤ w − z, which we will call ψ. The sum of
the contributions from A is 0 ≤ w − y, which satisfies our conditions for
an interpolant, since it is derivable from A, and, along with B, gives us ψ.
Moreover, notice that the coefficient of w is the same in the interpolant and
in ψ. In general, the coefficients of any local variables in ψ and its interpolant
must be equal, since these cannot be altered by adding inequalities from B.
Thus, in particular, when we derive 0 ≤ −1, a contradiction, only variables
common to A and B may appear (with non-zero coefficient) in the interpolant.
This intuition is captured formally in the following definition:

Definition 1 An inequality interpolation has form (A,B) ` 0 ≤ x [x′, ρ, γ],
where A and B are sets of literals, x and x′ are terms, and ρ and γ are
formulas. It is said to be valid when:

(1) A, ρ |= 0 ≤ x′ ∧ γ
(2) B |= ρ and B, γ |= 0 ≤ x− x′ and,
(3) ρ, γ � B and x′, ρ, γ � A and (x− x′) � B.

For the current system, the formulas ρ and γ are always >. They will play
a role later, when we combine theories. The intuition behind this definition

4

is that 0 ≤ x is a linear combination of inequalities from A and B, where x′

represents the contribution to x from A.

We now begin with the interpolation rules for introduction of hypotheses. Here,
we distinguish two cases, depending on whether the hypothesis is from A or B:

HypLeq-A
(A,B) ` 0 ≤ x [x,>,>]

(0 ≤ x) ∈ A

HypLeq-B
(A,B) ` 0 ≤ x [0,>,>]

(0 ≤ x) ∈ B

The soundness of these rules (i.e., validity of their consequents, given the side
conditions) is easily verified. The rule for combining inequalities is as follows:

Comb

(A,B) ` 0 ≤ x [x′, ρ, γ]

(A,B) ` 0 ≤ y [y′, ρ′, γ′]

(A,B) ` 0 ≤ c1x+ c2y [c1x′ + c2y′, ρ ∧ ρ′, γ ∧ γ′]
c1,2 > 0

In effect, we derive the interpolant for a linear combination of inequalities by
taking the same linear combination of the contributions from A. Again, the
reader may wish to verify that the validity conditions for inequality interpo-
lations are preserved by this rule.

Example 1 As an example, let us derive an interpolant for the case where
A is (0 ≤ y − x)(0 ≤ z − y) and B is (0 ≤ x − z − 1). For clarity, we will
abbreviate (A,B) ` ψ [x,>,>] to ` ψ [x]. We first use the HypLeq-A rule
to introduce two hypotheses from A:

HypLeq-A
` 0 ≤ y − x [y − x]

HypLeq-A
` 0 ≤ z − y [z − y]

Now, we sum these two inequalities using the Comb rule:

Comb
` 0 ≤ y − x [y − x] ` 0 ≤ z − y [z − y]

` 0 ≤ z − x [z − x]

Now we introduce a hypothesis from B:

HypLeq-B
` 0 ≤ x− z − 1 [0]

5

Finally, we sum this with our previous result, to obtain 0 ≤ −1, which is false:

Comb
` 0 ≤ z − x [z − x] ` 0 ≤ x− z − 1 [0]

` 0 ≤ −1 [z − x]

You may want to check that all the interpolations derived are valid. Also notice
that in the last step we have derived a contradiction, and that 0 ≤ z − x is an
interpolant for (A,B).

Now we turn to Boolean reasoning using the resolution rule. Constructions to
produce linear-size interpolants from resolution proofs were first introduced
in [5,12]. They differ slightly from the one used here, which derives from [7].
The basic idea is to reduce the resolution proof to a Boolean circuit in which
each resolution step corresponds to a gate. In this circuit, resolutions on local
predicates correspond to “or” gates, while resolutions on global predicates
correspond to “and” gates.

The intuition behind this is as follows. A resolution step is a case split in the
proof on some atomic predicate. If we split cases on a predicate unique to A,
then A proves a disjunction of facts – one which holds in the positive case
and the other in the negative. If we split cases on a predicate occurring in B,
then B proves a disjunction of facts, both of which must be refuted by A, so A
must prove a conjunction. As an example, suppose that A contains the clauses
〈¬a, b〉, 〈a, c〉, while B contains 〈¬b〉, 〈¬c〉. To refute this pair, we might split
cases on a. In the positive case, A implies b, which is refuted by B, while in
the negative case A implies c, which is also refuted by B. Thus, b ∨ c is an
interpolant. If we reverse the definitions of A and B, and again split cases
on a (now a global proposition) we observe that B proves b in one case and c
in the other, both of which are refuted by A. Thus A proves the conjunctive
interpolant ¬b ∧ ¬c.

We now introduce an interpolation syntax for clauses. If Θ is a set of literals,
we will denote by Θ ↓ B the literals of Θ over atomic predicates occurring in
B and by Θ \B the literals of Θ over atomic predicates not occurring in B.

Definition 2 A clause interpolation has the form (A,B) ` 〈Θ〉 [φ], where A
and B are clause sets, Θ is a literal set and φ is a formula. It is said to be
valid when:

(1) A |= φ ∨ 〈Θ \B〉, and
(2) B, φ |= 〈Θ ↓ B〉, and
(3) φ � B and φ � A.

Notice that if Θ is empty, φ is an interpolant for (A,B). Notice also that the
interpolant φ serves as a cut that localizes the proof of the clause 〈Θ〉. If φ is

6

false, then A proves 〈Θ \B〉, while if φ is true then B proves 〈Θ ↓ B〉.

Two rules are needed for introduction of clauses as hypotheses:

HypC-A
(A,B) ` 〈Θ〉 [〈Θ ↓ B〉]

〈Θ〉 ∈ A

HypC-B
(A,B) ` 〈Θ〉 [>]

〈Θ〉 ∈ B

Note that the derived interpolations are trivially valid, given the side condi-
tions. Now, we introduce two interpolation rules for resolution of clauses. The
first is for resolution on an atomic predicate not occurring in B:

Res-A

(A,B) ` 〈p,Θ〉 [φ]

(A,B) ` 〈¬p,Θ′〉 [φ′]

(A,B) ` 〈Θ,Θ′〉 [φ ∨ φ′]
p not occurs in B

Soundness. For the first condition, we know that A implies φ∨p∨〈Θ\B〉 and
φ′∨¬p∨〈Θ′ \B〉. By resolution on p we have A implies (φ∨φ′)∨〈(Θ,Θ′)\B〉.
For the second condition, given B, we know that φ =⇒ 〈Θ ↓ B〉 and
φ′ =⇒ 〈Θ′ ↓ B〉. Thus, φ ∨ φ′ implies 〈(Θ,Θ′) ↓ B〉. The third condition is
trivial. 2

The second rule is for resolution on an atomic predicate occurring in B:

Res-B

(A,B) ` 〈p,Θ〉 [φ]

(A,B) ` 〈¬p,Θ′〉 [φ′]

(A,B) ` 〈Θ,Θ′〉 [φ ∧ φ′]
p occurs in B

Soundness. For the first validity condition, we know that A implies φ∨〈Θ\B〉
and φ′ ∨ 〈Θ′ \B〉. These in turn imply (φ∧ φ′)∨ 〈(Θ,Θ′) \B〉. For the second
condition, given B, we know that φ =⇒ p ∨ 〈Θ ↓ B〉 while φ′ =⇒ ¬p ∨
〈Θ′ ↓ B〉. By resolution, we have that φ ∧ φ′ implies 〈(Θ,Θ′) ↓ B〉. The third
condition is trivial. 2

Example 2 As an example, we derive an interpolant for (A,B), where A is
〈b〉, 〈¬b ∨ c〉 and B is 〈¬c〉. First, using the HypC-A rule, we introduce the
two clauses from A as hypotheses:

HypC-A
` 〈b〉 [⊥]

HypC-A
` 〈¬b, c〉 [c]

7

We now resolve these two clauses on b.

Res-A
` 〈b〉 [⊥] ` 〈¬b, c〉 [c]

` 〈c〉 [⊥ ∨c]

We then use the Hyp-B rule to introduce the clause from B.

Hyp-B
` 〈¬c〉 [>]

Finally, we resolve the last two clauses on c. We use the Res-B rule, since c
occurs in B.

Res-B
` 〈c〉 [c] ` 〈¬c〉 [>]

` 〈〉 [c ∧ >]

Thus c is an interpolant for (A,B).

Finally, we introduce a rule to connect inequality reasoning to Boolean reason-
ing. In effect, we prove a tautology clause 〈Θ〉 by deriving a contradiction from
the set of the negations of its literals (which we will abbreviate as ¬Θ). To
obtain a clause interpolation, we first partition these literals into two subsets,
¬Θ \B and ¬Θ ↓ B, which will take role of A and B respectively in deriving
the contradiction. The interpolant we obtain for this pair serves as the inter-
polant for the derivation of A,B ` 〈Θ〉. Note that 〈Θ〉 itself is a tautology
and hence its proof does not depend on A or B. However, the interpolant we
obtain depends on A and B, since these determine the partition of the literals
in ¬Θ. The interpolation rule is as follows:

Contra
(¬Θ \B,¬Θ ↓ B) `⊥ [x′, ρ, γ]

(A,B) ` 〈Θ〉 [ρ =⇒ (0 ≤ x′ ∧ γ)]
‡

where ‡ indicates that all atomic predicates occurring Θ must occur in A or B.

Soundness. Let φ be ρ =⇒ (0 ≤ x′∧γ). By the first condition of Definition 1,
¬Θ\B |= φ. Thus, by DeMorgan’s laws, we have |= φ∨〈Θ\B〉, satisfying the
first validity condition. From the second condition of Definition 1, we know
that ¬Θ ↓ B |= ρ, and ¬Θ ↓ B, γ |= 0 ≤ −1−x′. Thus, summing inequalities,
we have ¬Θ ↓ B, φ |= 0 ≤ −1, so by DeMorgan’s laws φ |= 〈Θ ↓ B〉 holds,
satisfying the second validity condition. Finally, the third validity condition is
guaranteed by the third condition of Definition 1 and the side condition. 2

8

2.2 Equality and uninterpreted functions

In our logic of equality and uninterpreted functions, a term is either an in-
dividual variable or a function application f(x1, . . . , xn) where f is a n-ary
function symbol and x1 . . . xn are terms. An atomic predicate is a proposi-
tional variable or an equality of the form x = y where x and y are terms.
In the sequel, we will use the notation x ' y for syntactic equality of two
meta-variables x and y, to distinguish this notion from the atomic predicate
x = y.

Refutations in this theory are generated using the following proof rules (in
addition to the Hyp rule):

Refl
Γ ` x = x

† Symm
Γ ` x = y

Γ ` y = x

Trans
Γ ` x = y Γ ` y = z

Γ ` x = z
Cong

Γ ` x1 = y1 . . . Γ ` xn = yn

Γ ` f(x1, . . . , xn) = f(y1, . . . , yn)
†

EqNeq
Γ ` x = y

Γ `⊥
¬(x = y) ∈ Γ

where † indicates that the terms equated in the consequent must occur in Γ.
This requirement is not needed for soundness, but our interpolation rules
will rely on it. Boolean reasoning can be added to the system by adding the
Contra and Res rules of the previous system.

Now let us consider the problem of deriving interpolants from proofs using the
transitivity rule. To derive x = y, we effectively build up a chain of equalities
σ ' (x = t1)(t1 = t2) · · · (tn = y). Now suppose that these equalities are drawn
from two sets, A and B, and suppose for the moment that at least one global
term occurs in σ. We can make several observations. First, let •σ stand for the
leftmost global term in σ, and let σ• stand for the rightmost global term in σ
(with respect to (A,B)). We observe that A implies x = •σ and y = σ•, since
all the equalities to the left of •σ and to the right of σ• must come from A.
Thus, A gives us solutions for x and y as global terms.

Moreover, consider the segment of σ between •σ and σ•. The endpoints of
this segment are by definition global terms. We can divide the segment into
maximal subchains, consisting of only equalities from A, or only equalities
from B. Each such subchain (ti = · · · = tj) can be summarized by the single
equality ti = tj. Note that ti and tj must be global terms, since they are
either •σ or σ•, or are common between an A and a B subchain. Thus, if the

9

subchain is derived from A, then ti and tj must be common to A and B. We
will use γ to denote the conjunction of the summaries of the A subchains. We
observe that γ is implied by A, and that B with γ implies •σ = σ•, and that
γ contains only common symbols. Thus, we can say that γ is an interpolant
for the derivation of x = y, under the global solutions we obtain for x and y.

We have not yet considered the case when σ contains no global terms. We
will call this the degenerate case, and will say that by definition •σ = y and
σ• = x. In the degenerate case, our interpolant γ is just >, and our solutions
yield exactly x = y.

We are now ready to define an interpolation syntax for equalities, as follows:

Definition 3 An equality interpolation has form (A,B) ` x = y [x′, y′, ρ, γ],
where A and B are sets of literals, x, y, x′, y′ are terms, and ρ and γ are
formulas. It is said to be valid when:

(1) A, ρ |= x = x′ ∧ y = y′ ∧ γ,
(2) B |= ρ and

(a) x′ ' y and y′ ' x (the degenerate case), or
(b) x′, y′ � B and B, γ |= x′ = y′,

(3) ρ, γ � B and ρ, γ � A, and if x � B then x′ ' x, else x′ � A, and
similarly for y, y′.

Here, x′ and y′ take the roles of •σ and σ•, respectively. For the case of transi-
tivity proofs, ρ is always >. The first condition says that A gives the solutions
x = •σ and y = σ•. The second says, in effect, that B along with the A sub-
chains γ guarantees •σ = σ• (except in the degenerate case). In the degenerate
case, A entails x = y by itself. The third condition contains some invariants
that are necessary for soundness of the transitivity rule, as we shall observe
shortly.

In order to introduce a hypothesis x = y from A, we need extract from x = y
the leftmost and rightmost global terms. For this purpose, we will use •(x, y)
as a shorthand for x if x � B, else y and similarly (x, y)• as a shorthand for
y if y � B, else x. Further, if x and y are both global, we introduce an A
subchain into γ. Thus, letting p|B denote p if p � B else >, we have:

HypEq-A
(A,B) ` x = y [•(x, y), (x, y)•,>, (x = y)|B]

(x = y) ∈ A

The consequent of the above rule is easily shown to be valid, according to
Definition 3, by splitting cases on whether x � B and y � B. Introducing a

10

hypothesis from B is handled as follows:

HypEq-B
(A,B) ` x = y [x, y,>,>]

(x = y) ∈ B

Soundness is straightforward. The interpolation rules for reflexivity and sym-
metry are as follows:

Refl
(A,B) ` x = x [x, x,>,>]

† Symm
(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` y = x [y′, x′, ρ, γ]

Here and in the sequel, † indicates that the terms equated in the consequent
must occur in A or B. Note that for Refl, condition 3 holds because because
the side condition ensures x � B or x � A. The other soundness conditions
are straightforward.

Now we consider the transitivity rule. From antecedents x = y and y = z, we
derive x = z. Figure 1 depicts the case when neither antecedent is degenerate.
In the figure, solids lines represent equalities implied by A, and dotted lines

x x′ y′ y y′′ z′ z

Fig. 1. Transitivity rule for non-degenerate antecedents

represent equalities implied by B,γ. Notice that x′ and z′ are solutions for
x and z. Moreover, the two center equalities can be combined to obtain an
equality over global terms, y′ = y′′. If y is local, then we know y′, y′′ � A.
Adding this equality to γ, we have B, γ implies x′ = z′, while γ is still over
common symbols. Thus, γ is now an interpolant for x = z under the solutions
x = x′, z = z′. On the other hand, if y is not local, then we know y′ ' y′′. Thus,
γ serves as an interpolant unchanged. This gives us the following interpolation
rule:

Trans

(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` y = z [y′′, z′, ρ′, γ′]

(A,B) ` x = z [x′, z′, ρ ∧ ρ′, γ ∧ γ′ ∧ y′ .= y′′]
x′ 6' y, z′ 6' y

where x
.
= y denotes the formula > if x ' y else the formula x = y.

Soundness. The first condition of Definition 3 holds trivially by validity of
the antecedents. The side condition of the rule ensures that the antecedents
are not degenerate. Now suppose B, γ, γ′ and y′ = y′′ hold. By validity of
the antecedents, we know that x′ = y′ and y′′ = z′ hold. Thus, we have
B, γ ∧ γ′ ∧ y′ .= y′′ |= x′ = z′. Moreover, since x′, z′ � B by validity of the

11

antecedents, condition 2 is satisfied. Finally, condition 3 holds by validity of
the antecedents. In particular, note that if y � B, then y ' y′ ' y′′, so y′

.
= y′′

is >. Otherwise, we know that y′, y′′ � A. Either way, (y′
.
= y′′) � A. 2

Now suppose that one of the antecedents is degenerate. Figure 2 depicts the
case where the antecedent x = y is degenerate. Note here that y′′ is a solution

x y y′′ z′ z

Fig. 2. Transitivity rule for one degenerate antecedent

for x and z′ is a solution for z. Moreover, B, γ give us y′′ = z′. Thus γ gives
us an interpolant for x = z under the solutions x = y′′, z = z′. On the
other hand, if both antecedents are degenerate, then the consequent is also
degenerate. Thus, letting x(y/z) denote y if x ' z else x, we have:

Trans′

(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` y = z [y′′, z′, ρ′, γ′]

(A,B) ` x = z [x′(y′′/y), z′(y′/y), ρ ∧ ρ′, γ ∧ γ′]
x′ ' y or z′ ' y

Soundness. Suppose that A, ρ and ρ′ hold. Then we know x = x′ and y =
y′′ hold, thus x = x′(y′′/y) holds (and similarly z = z′(y′/y) holds) thus
condition 1 is satisfied. Now suppose that B, γ and γ′ hold. If x′ ' y and
z′ 6' y then by validity of the antecedent we know that z′ = y′′ holds, hence
x′(y′′/y) = z′(y′/y) holds (and a symmetric argument holds for the case x′ 6' y
and z′ ' y). On the other hand, if x′ ' y and z′ ' y, then either y 6� B, in
which case the consequent is degenerate, or y � B, in which case y ' y′ ' y′′,
thus trivially, x′(y′′/y) = z′(y′/y). In any case, condition 2 holds. Now suppose
x � B. Then x′ ' x and x′(y′′/y) = x holds. On the other hand, suppose
x 6� B. Then x′ � A. Thus if x′ 6' y then x′(y′′/y) � A, however if x′ ' y then
either y � B and y′′ ' y or y 6� B and y′′ � A. In either case, x′(y′′/y) � A.
Arguing symmetrically for z′(y′/y), we have condition 3. 2

Now we consider the Cong rule for uninterpreted functions symbols. Suppose
that from x = y we deduce f(x) = f(y) by the Cong rule. To produce an
interpolation, we must obtain solutions for f(x) and f(y) in terms of variables
occurring in B (except in the degenerate case). We can easily obtain these
solutions by simply applying f to the solutions for x and y. However, we
must also take care in the case when the function symbol f does not occur
in B, since in this case we cannot use f in the solutions. In the simple case,
when either f(x) or f(y) occurs in B, we have the following rule (for unary
functions):

12

Cong1

(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` f(x) = f(y) [f(x′), f(y′), ρ, γ]
† f(x) � B or f(y) � B

Soundness. Since A, ρ |= x = x′ ∧ y = y′ ∧ γ, we know that A, ρ |= f(x) =
f(x′)∧f(y) = f(y′)∧γ, satisfying condition 1. By the side condition, we have
x � B or y � B, so, since the antecedent satisfies condition 3, we know that
either x′ ' x or y′ ' y. Thus, either x and y are identical or the antecedent
is non-degenerate. In either event, we have x′, y′ � B and B, γ |= x′ = y′.
Since we know by the side condition that the function symbol f occurs in B,
we have f(x′), f(y′) � B, and by congruence we have B, γ |= f(x′) = f(y′),
satisfying condition 2. For condition 3, if f(x) � B, then x � B, hence x′ ' x
(since the antecedent satisfies condition 3), hence f(x′) ' f(x). If f(x) 6� B
then f(x) must occur in A, hence x � A, hence x′ � A, hence f(x′) � A
(since we know f occurs in A). Thus (arguing symmetrically for f(y), f(y′))
condition 3 is satisfied. 2

Example 3 Suppose A is x = y and B is y = z and we wish to derive an
interpolation for f(x) = f(z). After introducing our two hypotheses, we use
the Trans′ rule to get x = z:

Trans′
` x = y [y, y,>,>] ` y = z [y, z,>,>]

` x = z [y, z,>,>]

We then apply the Cong rule to obtain f(x) = f(z):

Cong1

` x = z [y, z,>,>]

` f(x) = f(z) [f(y), f(z),>,>]

The more complicated case is when neither f(x) nor f(y) occurs in B. Here,
we cannot in general use f in the interpolant, since it may not be a common
symbol. However, we can make use of the side condition that f(x) and f(y)
must occur in A or B (i.e., the proof cannot introduce new terms). From this
we know that f(x) and f(y) must occur in A. This allows us to produce a
degenerate interpolation for the consequent. We let A prove f(x) = f(y), but
under a condition ρ proved by B. That is, A proves f(x) = f(y) if B proves
γ =⇒ x′ = y′. Of course, we need this condition only if the antecedent is
non-degenerate. Otherwise, A proves f(x) = f(y) directly. Thus, the following

13

rule applies, where p|B denotes p if p � B else >:

Cong′
1

(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` f(x) = f(y)

[f(y), f(x), ρ ∧ (γ =⇒ (x′ = y′)|B), γ]

† f(x) 6� B and f(y) 6� B

Soundness. Suppose the antecedent is degenerate, that is, x′ ' y and y′ ' x.
Then we have A, ρ |= x = y∧y = x∧γ. If it is not degenerate, then x′, y′ � B,
thus (x′ = y′)|B ' (x′ = y′). Since A, ρ |= x = x′ ∧ y = y′ ∧ γ, it follows
that A, ρ ∧ (γ =⇒ (x′ = y′)|B) |= x = y ∧ y = x. In either case, by
congruence we have A, ρ ∧ (γ =⇒ (x′ = y′)|B) |= f(x) = f(y) ∧ f(y) =
f(x)∧ γ satisfying condition 1. If the antecedent is degenerate, and if x and y
are not identical, we know that x, y 6� B (because the antecedent satisfies
condition 3), thus (x′ = y′)|B ' >, thus B |= ρ ∧ (γ =⇒ (x′ = y′)|B). If
the antecedent is not degenerate, then, by validity of the antecedent, B, γ |=
x′ = y′, thus we also have B |= ρ ∧ (γ =⇒ (x′ = y′)|B). Moreover, since the
consequent is always degenerate, condition 2 is satisfied. Finally, since by the
side condition, f(x), f(y) cannot occur in B, we know they must occur in A,
satisfying condition 3. 2

The above two rules generalize in a natural way to n-ary function symbols.
Using the notation x̄ as an abbreviation for x1 . . . xn, we have:

Cong

(A,B) ` x1 = y1 [x′1, y
′
1, ρ1, γ1]

. . .

(A,B) ` xn = yn [x′n, y
′
n, ρn, γn]

(A,B) ` f(x̄) = f(ȳ)

[f(x̄′), f(ȳ′),∧n
i=1ρi,∧n

i=1γi]

† f(x̄) � B or f(ȳ) � B

Soundness. Since, for all i, A, ρi |= xi = x′i ∧ yi = y′i ∧ γi, we know that
A,∧n

i=1ρi |= f(x̄) = f(x̄′) ∧ f(ȳ) = f(ȳ′) ∧ (∧n
i=1γi), satisfying condition 1. By

the side condition, we have for all i, xi � B or for all i, yi � B, so, since the
antecedents satisfy condition 3, we know that for all i, either x′i ' xi or y′i ' yi.
Thus, either xi and yi are identical or the ith antecedent is non-degenerate. In
either event, we have x′i, y

′
i � B and B, γi |= x′i = y′i. Since we know by the side

condition that the function symbol f occurs in B, we have f(x̄′), f(ȳ′) � B,
and by congruence we have B,∧n

i=1γi |= f(x̄′) = f(ȳ′), satisfying condition 2.
For condition 3, if f(x̄) � B, then for all i, xi � B, hence x′i ' xi (since the
antecedents satisfy condition 3), hence f(x̄′) ' f(x̄). If f(x̄) 6� B then f(x̄)
must occur in A, hence for all i, xi � A, hence x′i � A, hence f(x̄′) � A
(since we know f occurs in A). Thus (arguing symmetrically for f(ȳ), f(ȳ′))

14

condition 3 is satisfied. 2

For the case when neither f(x) nor f(y) occurs in B, we have:

Cong′

(A,B) ` x1 = y1 [x′1, y
′
1, ρ1, γ1]

. . .

(A,B) ` xn = yn [x′n, y
′
n, ρn, γn]

(A,B) ` f(x̄) = f(ȳ) [f(ȳ), f(x̄),

∧n
i=1(ρi ∧ (γi =⇒ (x′i = y′i)|B)),∧n

i=1γi]

† f(x̄) 6� B, f(ȳ) 6� B

Soundness. Suppose the ith antecedent is degenerate, that is x′i ' yi and
y′i ' xi. Then we have A, ρi |= xi = yi ∧ yi = xi ∧ γi. If it is not degenerate,
then x′i, y

′
i � B, thus (x′i = y′i)|B ' (x′i = y′i). Since A, ρi |= xi = x′i ∧ yi =

y′i ∧ γi, it follows that A, ρi ∧ (γi =⇒ (x′i = y′i)|B) |= xi = yi ∧ yi = xi.
Thus, by congruence, we have A,∧n

i=1(ρi ∧ (γi =⇒ (x′i = y′i)|B) |= f(x̄) =
f(ȳ) ∧ f(ȳ) = f(x̄) ∧ (∧n

i=1γi) satisfying condition 1. If the ith antecedent
is degenerate, and if xi and yi are not identical, we know that xi, yi 6� B
(because the antecedent satisfies condition 3), thus (x′i = y′i)|B ' >, thus
B |= ρi ∧ (γi =⇒ (x′i = y′i)|B). If the ith antecedent is not degenerate,
then, by validity of the antecedent, B, γi |= x′i = y′i, thus we also have B |=
ρi ∧ (γi =⇒ (x′i = y′i)|B). Thus, B |= ∧n

i=1(ρi ∧ (γi =⇒ (x′i = y′i)|B)).
Moreover, since the consequent is always degenerate condition 2 is satisfied.
Finally, since by the side condition, f(x̄), f(ȳ) cannot occur in B, we know
they must occur in A, satisfying condition 3. 2

Now we deal with the EqNeq rule, which derives false from an equality and
its negation. First, we consider the case where the disequality is contained
in A:

EqNeq-A
(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) `⊥ [0, ρ, γ ∧ (x′ 6= y′)]
(x 6= y) ∈ A, y′ 6' x or x′ 6' y

Notice that we derive an inequality interpolation here so that we can then
apply the Contra rule. The idea is to translate the disequality over local
terms to an equivalent disequality over global terms.

Soundness. Since A, ρ |= x = x′ ∧ y = y′, and A |= x 6= y, we know A, ρ |=
x′ 6= y′, which gives us condition 1. Since by the side condition, the antecedent
is not degenerate, we have B, γ |= x′ = y′, thus B, γ ∧ (x′ 6= y′) |=⊥, which
gives us condition 2. Condition 3 is trivial. 2

15

We handle the degenerate case separately:

EqNeq-A′ (A,B) ` x = y [y, x, ρ, γ]

(A,B) `⊥ [0, ρ,⊥]
(x 6= y) ∈ A

Soundness. Since A, ρ |= x = y, and A |= x 6= y, we know A, ρ |=⊥, which
gives us condition 1. Further, B,⊥|=⊥, giving us condition 2. Condition 3 is
trivial. 2

The case where the disequality comes from B is handled as follows:

EqNeq-B
(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) `⊥ [0, ρ, γ]
(x 6= y) ∈ B

Soundness. Condition 1 is trivial. Since by the side condition, x, y � B, by
condition 3 of the antecedent, we know x′ ' x and y′ ' y, thus B, γ |= x = y,
thus B, γ |=⊥, satisfying condition 2. Condition 3 is trivial. 2

2.3 Combining LI and EUF

In the combined logic, we will say that a term is an individual variable or
a function application f(x1, . . . , xn) where f is a n-ary function symbol and
x1 . . . xn are terms. An arithmetic term is a linear combination c0 + c1v1 +
· · · cnvn, where v1 . . . vn are distinct terms and c0 . . . cn are integer constants,
and where c1 . . . cn are non-zero. An atomic predicate is either a propositional
variable, an inequality of the form 0 ≤ x, where x is an arithmetic term, or
an equality of the form x = y where x and y are terms.

Our proof system consists of all the previous proof rules, with the addition of
the following two rules that connect equality and inequality reasoning:

LeqEq
Γ ` x = y

Γ ` 0 ≤ x− y

EqLeq
Γ ` 0 ≤ x− y Γ ` 0 ≤ y − x

Γ ` x = y
†

The LeqEq rule, inferring an inequality from an equality, can be handled by

16

the following interpolation rules:

LeqEq
(A,B) ` x = y [x′, y′, ρ, γ]

(A,B) ` 0 ≤ x− y [x− x′ − y + y′, ρ, γ]
y′ 6' x or x′ 6' y

Soundness. Since A, ρ |= x′ = x ∧ y′ = y, we have A, ρ |= 0 ≤ x− x′ − y + y′,
satisfying condition 1. Since B, γ |= x′ = y′, we have B, γ |= 0 ≤ (x− x′− y+
y′) − (x − y), satisfying condition 2. Finally, since x′, y′ � B, it follows that
the coefficients of any v 6� B must be the same in x − x′ − y + y′ and x − y,
satisfying condition 3. 2

We deal separately with the special case where the antecedent is degenerate:

LeqEq′ (A,B) ` x = y [y, x, ρ, γ]

(A,B) ` 0 ≤ x− y [x− y, ρ, γ]

Soundness. Since A, ρ |= x = y, we have A, ρ |= 0 ≤ x − y, satisfying condi-
tion 1. Conditions 2 and 3 are trivial. 2

We now consider the EqLeq rule, which derives an equality from a pair of
inequalities. We distinguish three cases, depending on whether x and y are
local or global. The first case is when both x and y are global, and is straight-
forward:

EqLeq-BB

(A,B) ` 0 ≤ x− y [x′, ρ, γ]

(A,B) ` 0 ≤ y − x [y′, ρ′, γ′]

(A,B) ` x = y [x, y, ρ ∧ ρ′,

γ ∧ γ′ ∧ 0 ≤ x′ ∧ 0 ≤ y′]

† x � B, y � B

Soundness. Condition 1 is trivial. By validity of the antecedents, B, γ |= 0 ≤
(x − y) − x′, thus B, γ ∧ 0 ≤ x′ |= 0 ≤ x − y (and similarly B, γ′ ∧ 0 ≤ y′ |=
0 ≤ y − x). Thus, B, γ ∧ γ′ ∧ 0 ≤ x′ ∧ 0 ≤ y′ |= x = y, satisfying condition 2.
Finally, by the side condition and by condition 3 of the antecedents, we know
that x′, y′ � B and x′, y′ � A. Thus, condition 3 is satisfied. 2

The case when x is local and y is global is more problematic. Suppose, for
example, that A is (0 ≤ x−a)(0 ≤ b−x) and B is (0 ≤ y−b)(0 ≤ a−y). From
this we can infer 0 ≤ x− y and 0 ≤ y − x, using the Comb rule. Thus, using
the EqLeq rule, we infer x = y. To make an interpolation for this, we must
have a solution for x in terms of global variables, implied by A. Unfortunately,

17

there are no equalities that can be inferred from A alone. However, we can
derive a conditional solution, using the ρ component of the interpolation. In
our example, we will have

(A,B) ` x = y [b, y, 0 ≤ a− b, 0 ≤ b− a]

That is, A proves x = b, under the condition ρ that 0 ≤ a−b. This interpolation
is valid, since from B we can prove 0 ≤ a − b. Using A and this fact, we can
infer x = b. From A we can also infer 0 ≤ b−a, which, with B, gives us b = y,
hence x = y. This approach can be generalized to the following rule:

EqLeq-AB

(A,B) ` 0 ≤ x− y [x′, ρ, γ]

(A,B) ` 0 ≤ y − x [y′, ρ′, γ′]

(A,B) ` x = y [x+ y′, y, ρ ∧ ρ′ ∧ 0 ≤ −x′ − y′,

γ ∧ γ′ ∧ 0 ≤ x′ + y′]

† x 6� B, y � B

Soundness. By validity of the antecedents, we have A, ρ∧ρ′ |= 0 ≤ y′∧0 ≤ x′.
Thus, summing inequalities we have have A, ρ∧ρ′∧0 ≤ −x′−y′ |= 0 ≤ y′∧0 ≤
−y′∧0 ≤ x′+y′, thus A, ρ∧ρ′∧0 ≤ −x′−y′ |= x = x+y′∧0 ≤ x′+y′, satisfying
condition 1. Since (y − x− y′) � B, by condition 3 of the second antecedent,
and since y � B, we know that the coefficients of local variables in −x and y′

are the same, so (x + y′) � B. Moreover, by validity of the antecedents, we
have B, γ |= 0 ≤ x − y − x′ and B, γ′ |= 0 ≤ y − x − y′. From the former,
summing inequalities, we have B, γ, 0 ≤ x′ + y′ |= 0 ≤ (x+ y′)− y. Combining
with the latter, we have B, γ ∧ γ′ ∧ 0 ≤ x′ + y′ |= x + y′ = y, satisfying
condition 2. We know that the coefficients of local variables in −x and y′ are
the same, and similarly for x and x′. If follows that (x′ + y′) � B. Moreover,
since x 6� B, we know that x occurs in A, and we know by condition 3 of the
second antecedent that y′ � A. Thus x+ y′ � A, satisfying condition 3. 2

We can also write a symmetric rule EqLeq-BA. The final case for the EqLeq
rule is when x 6� B and y 6� B:

EqLeq-AA

(A,B) ` 0 ≤ x− y [x′, ρ, γ]

(A,B) ` 0 ≤ y − x [y′, ρ′, γ′]

(A,B) ` x = y [y, x, ρ ∧ ρ′ ∧ 0 ≤ y − x− y′

∧ 0 ≤ x− y − x′, γ ∧ γ′]

† x 6� B, y 6� B

Soundness. By validity of the antecedents, we have A, ρ |= 0 ≤ x′ and A, ρ′ |=
0 ≤ y′. Thus, summing equalities, we have A, ρ, 0 ≤ x − y − x′ |= 0 ≤ x − y
and A, ρ′, 0 ≤ y − x − y′ |= 0 ≤ y − x, thus A, ρ ∧ ρ′ ∧ 0 ≤ y − x − y′ ∧ 0 ≤

18

x− y−x′ |= x = y, satisfying condition 1. Also by validity of the antecedents,
we have B, γ |= 0 ≤ x − y − x′ and B, γ′ |= 0 ≤ y − x − y′. Moreover, the
consequent is degenerate, so condition 2 is satisfied. By the side condition, we
know x, y occur in A. Moreover, by condition 3 of the antecedents, we have
x′ � A, y′ � A, y − x − y′ � B and x − y − x′ � B. Thus, condition 3 is
satisfied. 2

2.4 Soundness and completeness

We are now ready to state soundness and completeness results for our inter-
polation system as a whole.

Definition 4 A formula φ is said to be an interpolant for a pair of formula
sets (A,B) when

(1) A |= φ, and
(2) B, φ |=⊥, and
(3) φ � A and φ � B.

Theorem 1 (Soundness) If a clause interpolation of the form (A,B) `
〈〉 [φ] is derivable, then φ is an interpolant for (A,B).

Proof sketch. Validity of the interpolation is by the soundness of the individual
interpolation rules and induction over the derivation length. By Definition 2
we know that A implies φ, that B and φ are inconsistent and that φ � B and
φ � A.

Theorem 2 (Completeness) For any derivable sequent A,B ` ψ, there is
a derivable interpolation of the form (A,B) ` ψ [X].

Proof sketch. We split cases on the rule used to derive the sequent, and show
in each case that there is always a rule to derive an interpolation for the
consequent from interpolations for the antecedents.

In effect, the proof of the completeness theorem gives us an algorithm for
constructing an interpolant from a refutation proof. This algorithm is linear
in the proof size, and the result is a formula (not in CNF) whose circuit size
is also linear in the proof size. 2

2 A sample implementation of this procedure in the Ocaml language is available
at http://www-cad.eecs.berkeley.edu/~kenmcmil.

19

2.5 Completeness issues for rational and integer arithmetic

Our system of interpolation rules is complete relative to the original proof
system in the sense that for every derivable sequent there is a correspond-
ing derivable interpolation. However, the original proof system itself is not
complete as given. For rational models, we can obtain a complete system by
simply treating the literal ¬(0 ≤ x) as a synonym for (0 ≤ −x) ∧ (x 6= 0).
That is, if we replace every occurrence of ¬(0 ≤ x) in the antecedent of the
Contra rule with the equivalent pair of literals (0 ≤ −x) and (x 6= 0), both
the original Contra rule and the corresponding interpolation rule remain
sound. The resulting system is complete for refutations over rational models.

The case for integers is somewhat more problematic. We can obtain an in-
complete system by treating ¬(0 ≤ x) as a synonym for 0 ≤ −1 − x, as is
done in [10]. As noted in [10], the solution space for a set of integer linear
inequalities is not convex. Thus, for completeness it may be necessary to split
cases until the solution space becomes convex. Unfortunately, the restriction
we put on the Contra rule prevents us from splitting cases on atomic pred-
icates not already present in A or B. Thus, we cannot make arbitrary cuts.
However, can effectively split cases on any atomic predicate p so long as p � A
or p � B. Suppose, for example, that p � A. In this case, we can add the
tautology clause (p ∨ ¬p) to A while preserving both its extension and its
support, and thus the validity of any interpolant we may obtain. In this way,
we can introduce the predicate p into the proof, and thus we can split cases
on it.

In particular, in the case of integer arithmetic, for any predicate 0 ≤ x occur-
ring in A or B, we can split cases on 0 ≤ −x. This allows us to split cases until
the solution space becomes convex. With such case splits, our system becomes
complete for integer linear arithmetic where all coefficients are 1 or −1, though
it still cannot disprove equalities such as 2x−2y = 1. For non-unit coefficients,
quantifier-free interpolants do not in general exist. Consider, for example, the
case where A is x = 2y and B is x = 2z + 1. The only interpolant for this
pair is “x is even”, which is not expressible in the logic without a quantifier.
Thus we cannot expect to obtain a complete system for general integer linear
arithmetic.

2.6 Interpolants for quantified formulas

Although the primary purpose of this work is to generate interpolants without
quantifiers, we should note that the method can also be applied to quantified
formulas, generating quantified interpolants. Suppose, for example, that for-

20

mulas A and B contain quantifiers, and that we have Skolemized these formu-
las to reduce them to universal prenex form. We then instantiate the universal
quantifiers with free individual variables to create quantifier-free formulas A′

and B′. In effect, this allows us to instantiate the quantifiers with any term t
occurring in A or B, by creating a new variable vt and adding the equality
vt = t to A or B as appropriate. Now we can compute an interpolant φ′ for the
pair of instantiated formulas (A′, B′). The interpolant φ′ may contain some
vt variables not occurring in A. However, as in [2], we can eliminate these
variables by quantifying them universally. Similarly, vt variables not occur-
ring in B can be eliminated by quantifying them existentially. The resulting
quantified formula is still implied by A and inconsistent with B, thus it is an
interpolant for (A,B).

3 An interpolating prover

Thus far we have described a proof system for a logic with linear inequalities
and uninterpreted functions, and set of rules for deriving interpolants from
proofs in this system. There are two further problems that we must address:
constructing an efficient proof-generating decision procedure for our system,
and translating interpolation problems for general formulas into interpolation
problems in clause form.

3.1 Generating proofs

The prover combines a DPLL style SAT solver, similar to Chaff [9], for proposi-
tional reasoning, with a proof-generating Nelson-Oppen style ground decision
procedure for theory reasoning. They are combined using the “lazy” approach
of [3]. That is, the SAT solver treats all atomic predicates in a given formula f
as free Boolean variables. When it finds an assignment to the atomic predi-
cates that satisfies f propositionally, it passes this assignment to the theory
decision procedure in the form of a set of literals l1 . . . ln. The ground deci-
sion procedure then attempts to derive a refutation of this set of literals. If it
succeeds, the literals used as hypotheses in the refutation are gathered (call
them m1, . . . ,mk). The Contra rule is then used to derive the new clause
〈¬m1, . . . ,¬mk〉. This clause is added to the SAT solver’s clause set. We will
refer to it as a blocking clause. Since it is in conflict in the current assignment,
the SAT solver now backtracks, continuing where it left off. On the other hand,
if the ground decision procedure cannot refute the satisfying assignment, the
formula f is satisfiable and the process terminates.

The SAT solver is modified in a straightforward way to generate refutation

21

proofs by resolution (see [8] for details). When a conflict occurs in the search
(i.e., when all the literals in some clause are assigned to false), the solver
resolves the conflicting clause with other clauses to infer a so-called “conflict
clause” (a technique introduced in the GRASP solver [14] and common to
most modern DPLL solvers). This inferred clause is added to the clause set,
and in effect prevents the same conflict from occurring in the future. The
clause set is determined to be unsatisfiable when the empty clause (false) is
inferred as a conflict clause. To derive a proof of the empty clause, we have
only to record the sequence of resolutions steps used to derive each conflict
clause.

The SAT solver’s clause set therefore consists of three classes of clauses: the
original clauses of f , blocking clauses (which are tautologies proved by the
ground decision procedure) and conflict clauses (proved by resolution). When
the empty clause is derived, we construct a refutation of f using the stored
proofs of the blocking clauses and the conflict clauses.

3.2 Interpolants for structured formulas

Of course, the interpolation problem (A,B) is not in general given in the clause
form required by our proof system. In general, A and B have arbitrary nesting
of Boolean operators. We now show how to reduce the problem of finding
an interpolant for arbitrary formulas (A,B) into the problem of finding an
interpolant for (Ac, Bc) where Ac and Bc are in clause form.

It is well known that satisfiability of an arbitrary formula f can be reduced in
linear time to satisfiability of a clause form formula [11]. This transformation
uses a set V of fresh Boolean variables, containing a variable vg for each non-
atomic propositional subformula g of f . A small set of clauses is introduced
for each occurrence of a Boolean operator in f . For example, if the formula
contains g∧h, we add the clauses 〈vg,¬vg∧h〉, 〈vh,¬vg∧h〉 and 〈¬vg,¬vh, vg∧h〉.
These clauses constrain vg∧h to be the conjunction of vg and vh. We will refer to
the collection of these clauses for all non-atomic subformulas of f as CnfV (f).
We then add the clause 〈vf〉 to require that the entire formula is true. The
resulting set of clauses is satisfiable exactly when f is satisfiable.

In fact, we can show something stronger, which is that any formula implied
by CnfV (f)∧ vf that does not refer to the fresh variables in V is also implied
by f . This gives us the following result:

Theorem 3 Let Ac = CnfU(A), 〈uA〉 and Bc = CnfV (B), 〈vB〉, where U ,V
are disjoint sets of fresh variables, and A, B are arbitrary formulas. An in-
terpolant for (Ac, Bc) is also an interpolant for (A,B).

22

This theorem allows us to compute interpolants for structured formulas by
using the standard translation to clause form.

4 Applications

The interpolating prover described above has a number of possible applications
in formal verification. These include refinement in predicate abstraction, and
model checking infinite-state systems, with and without predicate abstraction.

4.1 Using interpolation for predicate refinement

Predicate abstraction [13] is a technique commonly used in software model
checking in which the state of an infinite-state system is represented abstractly
by the truth values of a chosen set of predicates. In effect, the method computes
the strongest inductive invariant of the program expressible as a Boolean com-
bination of the predicates. Typically, if this invariant is insufficient to prove
the property in question, the abstraction is refined by adding predicates. For
this purpose, the Blast software model checker uses the interpolating prover
in a technique due to Ranjit Jhala [4].

The basic idea of the technique is as follows. A counterexample is a sequence of
program locations (a path) that leads from the program entry point to an error
location. When the model checker finds a counterexample in the abstraction, it
builds a formula that is satisfiable exactly when the path is a counterexample
in the concrete model. This formula consists of a set of constraints: equations
that define the values of program variables in each location in the path, and
predicates that must be true for execution to continue along the path from
each location (these correspond to program branch conditions).

Now let us divide the path into two parts, at state k. Let Ak be the set of con-
straints on transitions preceding state k and let Bk be the set of constraints
on transitions subsequent to state k. Note that the common variables of A
and B represent the values of the program variables at state k. An interpolant
for (Ak, Bk) is a fact about state k that must hold if we take the given path
to state k, but is inconsistent with the remainder of the path. In fact, if we
derive such interpolants for every state of the path from the same refutation
of the constraint set, we can show that the interpolant for state k is sufficient
to prove the interpolant for state k + 1. As a result, if we add the atomic
predicates occurring in the interpolants to the set of predicates defining the
abstraction, we are guaranteed to rule out the given path as a counterexam-
ple in the abstract model. Note that it is important here that interpolants

23

be quantifier-free, since the predicate abstraction method can synthesize any
Boolean combination of atomic predicates, but cannot synthesize quantifiers.

This interpolation approach to predicate refinement has the advantage that it
tells us which predicates are relevant to each program location in the path. By
using at each program location only predicates that are relevant to that loca-
tion, a substantial reduction in the number of abstract states can be achieved,
resulting in greatly increased performance of the model checker [4]. The fact
that the interpolating prover can handle both linear inequalities and uninter-
preted functions is useful, since linear arithmetic can represent operations on
index variables, while uninterpreted functions can be used to represent array
lookups or pointer dereferences, or to abstract unsupported operations (such
as multiplication). 3

4.2 Model checking with interpolants

Image computation is the fundamental operation of symbolic model check-
ing [1]. This requires quantifier elimination, which is generally the most com-
putationally expensive aspect of the technique. In [7] a method of approximate
image computation is described that is based on interpolation, and does not
require quantifier elimination. While the method is over-approximate, it is
shown that it can always be made sufficiently precise to prevent false neg-
atives for systems of finite diameter. While [7] treats only the propositional
case, the same theory applies to interpolation for first order logic. Thus, in
principle the interpolating prover can be used for interpolation-based model
checking of infinite-state systems whose transition relation can be expressed
in LIUF.

One potential application would be model checking with predicate abstraction.
This is a case where the transition relation is expressible in first order logic
and the state space is finite, guaranteeing convergence. That is, the state is
defined in terms of a set of Boolean variables v1 . . . vk corresponding to the
truth values of first-order predicates p1 . . . pk. The abstraction relation α is
characterized symbolically by the formula

∧
i v

′
i ↔ pi. If the concrete transition

relation is characterized by R, the abstract transition relation can be written

3 Unfortunately, array updates cannot be handled directly, since the theory of store
and select does not allow quantifier-free interpolants. Suppose, for example that A is
M ′ = store(M,a, x) and B is (b 6= c)∧(select(M ′, b) 6= select(M, b))∧(select(M ′, c) 6=
select(M, c)). The common variables here are M and M ′, but no facts expressible
using only these variables are implied by A (except true), thus there is no interpolant
for this pair. This problem can be avoided for deterministic programs by rewriting
terms from Bk into terms over program variables at step k. In general, however, we
need quantifiers to deal with array updates.

24

as the relational composition α−1 ◦R◦α. Note that the relational composition
can be accomplished by a simple renaming, replacing the “internal” variables
with fresh variables that are implicitly existentially quantified. That is, R ◦ S
can be written as R〈U/V ′〉 ∧ S〈U/V 〉 where V and V ′ are the current and
next-state variables respectively, and U is a set of fresh variables. Thus, if the
concrete transition relation can be written as a formula in LIUF, then so can
the abstract transition relation.

This formula can in turn be rewritten as a satisfiability-equivalent Boolean
formula, as is done in [6]. This allows the application of finite-state methods
for image computation, but has the disadvantage that it introduces a large
number of auxiliary boolean variables, making BDD-based image computa-
tions impractical. Although SAT-based quantifier elimination techniques are
more effective in this case, this approach limits the technique to a small num-
ber of predicates. On the other hand, the interpolation-based approach does
not require quantifier elimination or translation of the transition relation to a
Boolean formula, and thus avoids these problems.

Another possible approach would be to model check the concrete, infinite-state
system directly using the interpolation method of [7]. For this purpose, it is
also important that the interpolants be quantifier-free. This is because the
procedure is iterative – each reached-state set approximation is an interpolant
which must be fed back into a ground decision procedure to compute the next
approximation. For infinite state systems in general this process is not guar-
anteed to converge. However, in the special case when the model has a finite
bisimulation quotient, convergence is guaranteed. This is the case, for example,
for timed automata. Since the transition relation of a timed automaton can be
expressed in LI, it follows that reachability for timed automata can be verified
using the interpolation method. As an example, a model of Fischer’s timed mu-
tual exclusion protocol has been verified in this way. Similarly, a simple model
of Lamport’s “bakery” mutual exclusion, with unbounded ticket numbers, has
been modeled and verified (for safety). Using the method described above for
quantified interpolants, and some simple quantifier instantiation heuristics, it
was also possible to prove the simple bakery model for an arbitrary number
of processes. In principle, this method could be applied to software model
checking.

5 Conclusions and future work

The primary contribution of this work is a method of computing quantifier-free
Craig interpolants from refutations in a theory that includes linear inequalities
and uninterpreted functions. This extends earlier results that apply only to
linear inequalities or only to propositional logic. This procedure has been

25

integrated with a proof generating decision procedure, combining a SAT solver
and a Nelson-Oppen style prover to create an interpolating prover.

While the motivation for this work is mainly to experiment with interpolation-
based model checking of infinite-state systems, it has also been applied in a
manner quite unexpected by its author, to the problem of predicate refinement
in the Blast tool.

For future work, it is hoped that the interpolating prover will be useful for
direct interpolation-based software model checking, perhaps in a hybrid ap-
proach between the fully symbolic method of [7] and the explicit search method
of Blast. It is also interesting to consider what other theories might be use-
fully incorporated into the prover.

References

[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 1–33,
Washington, D.C., 1990. IEEE Computer Society Press.

[2] W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

[3] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In 18th Conference on Automated Deduction
(CADE 2002), Lecture Notes in Computer Science, Copenhagen, Denmark,
July 27-30 2002. Springer Verlag.

[4] T. A. Henzinger, R. Jhala, Rupak Majumdar, and K. L. McMillan. Abstractions
from proofs. In ACM Symp. on Principles of Prog. Lang. (POPL 2004), pages
232–244, 2004.

[5] J. Kraj́ıc̆ek. Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486,
June 1997.

[6] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate
abstraction. In Computer-Aided Verification (CAV 2003), pages 141–153, 2003.

[7] K. L. McMillan. Interpolation and sat-based model checking. In Computer-
Aided Verification (CAV 2003), pages 1–13, 2003.

[8] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2003), pages 2–17, 2003.

26

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference, pages
530–535, 2001.

[10] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Prog. Lang. and Sys., 1(2):245–257, 1979.

[11] D. Plaisted and S. Greenbaum. A structure preserving clause form translation.
Journal of Symbolic Computation, 2:293–304, 1986.

[12] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(2):981–998, June 1997.

[13] Hassen Säıdi and Susanne Graf. Construction of abstract state graphs with
PVS. In Orna Grumberg, editor, Computer-Aided Verification, CAV ’97,
volume 1254, pages 72–83, Haifa, Israel, 1997. Springer-Verlag.

[14] J. P. M. Silva and K. A. Sakallah. GRASP–a new search algorithm for
satisfiability. In Proceedings of the International Conference on Computer-Aided
Design, November 1996, 1996.

27

